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CIBB HISTORY

From 2004 to 2007, CIBB had the format of a special session of larger conferences,
namely, WIRN 2004 in Perugia, WILF 2005 in Crema, FLINS 2006 in Genoa, and WILF
2007 in Camogli. Given the great success of the special session at WILF 2007 that
included 26 strongly rated papers, the Steering Committee decided to turn CIBB into an
autonomous conference starting with the 2008 edition in Vietri. The following editions
in Italian venues were held in Genoa (2009), Palermo (2010) and Gargnano (2011). Until
2012, CIBB meetings were held annually in Italy with an increasing number of
participants. CIBB 2012 was

the first edition organized outside Italy, in Houston, while the 2013 edition was
organized in Nice, France and 2014 was organized in Cambridge, United Kingdom .

A rigorous peer-review selection process has been applied every time to ultimately
select the papers included in the program of the conference, in the post-conference
Proceedings published by LNBI-LNCS book series by Springer Verlag, and in some cases,
selected papers were published in special issues of well established international
journals, such as BMC Bioinformatics.

CIBB 2014, Cambridge, United Kingdom
CIBB 2013, Nice, Italy

CIBB 2012, Huston, Italy

CIBB 2011, Gargnano sul Garda, Italy
CIBB 2010, Palermo, ItalyP

CIBB 2009, Genoa, Italy

CIBB 2008, Vietri sul Mare, Italy

CIBB 2007, Portofino, Italy

CIBB 2006, Genova, Italy

CIBB 2005, Crema, Italy

CIBB 2004, Perugia, Italy



CiBB 2015 OVERVIEW

CIBB (Computational Intelligence methods for Bioinformatics and Biostatistics) is a
meeting with more than 10-year of history. Its main goal is to provide a forum open to
researchers from different disciplines to present problems concerning computational
techniques in bioinformatics, systems biology and medical informatics, to discuss cutting
edge methodologies and accelerate life science discoveries. Following this tradition and
roots, this year's meeting will bring together researchers from the international scientific
community interested in this field to discuss the advancements and the future
perspectives in bioinformatics and biostatistics. Applied biologists are also invited to
participate in order to propose novel challenges aimed to have high impact for
molecular biology and translational medicine. Location is the CNR Research Area Napoli
1, in Naples Italy. CNR Research Area Napoli 1 is the Biomedical and Biotechnological of
the National Research Council in Naples.

Technical areas addressed by CIBB 2015 include, but are not limited to: High
dimensional statistical analysis of omic data; Next generation sequencing bioinformatics;
Multi-omic data integration; Methods for supervised and unsupervised learning;
Prediction of protein structures; Methods for comparative genomics; Algorithms for
molecular evolution and phylogenetic analysis; Mathematical modelling and simulation
of biological systems; Systems and synthetic biology; Bio-molecular databases and data
mining; Bio-medical text mining and imaging; Statistical methods for the analysis of
clinical data; Methods for the visualization of high dimensional complex omic data;
Software tools for bioinformatics.

The scientific program includes, besides some plenary talks, contributed papers that will
be presented in plenary oral and poster sessions. Accepted papers will be published in
the conference proceedings. A selection of papers presented at CIBB 2015 will be
published a in post conference volume printed by an international publisher. Moreover,
we are planning to publish the best papers in extended form in a special issue of BMC
Bioinformatics.

Five special sessions are organized at CIBB 2015:

» The EDGE, enhanced definition of genomic entities for systems biomedicine in oncology,

» New knowledge from old data: power of data analysis and integration methods

* Regularization methods for genomic data analysis

* Large-Scale and HPC data analysis in bioinformatics: intelligent methods for
computational, systems and synthetic biology

* Multi Omic metabolic models and statistical Bioinformatics of adaptations and biological
associations

ISBN: 9788890643798

Published by Department of Informatics, University of Salerno and IAC-CNR.
Published on September 12, 2015, in Naples, Italy.
@ 2015 Claudia Angelini
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Conference program
September 10, 2015

8:30-9:20 Registration
9:20-9:30: Welcome
9: 30-10:10 Invited Speaker Talk
Dario Greco,
Computational challenges in systems nanotoxicology

10:10-10:50 Contributed Regular Talks

David Causeur, Emeline Perthame and Ching-Fan Sheu.
Signal identification in ERP data by decorrelated Higher Criticism Thresholding

Pinar Kavak, Bekir Ergtiner, Duran Ustek, Bayram Yuksel, Mahmut Samil Sagiroglu, Tunga
Gungodr and Can Alkan..
Improving genome assemblies using multi-platform sequence data

10:50-11:30 Coffee Break
11:30-11:50 Contributed Short Talks

Reem Alsrraj, Bassam Alkindy, Christophe Guyeux, Laurent Philippe and Jean-Francois
Couchot.
Well-supported phylogenies using largest subsets of core-genes by discrete particle swarm
optimization.

Daniela Evangelista, Mariano Avino, Kumar P. Tripathi and Mario R. Guarracino.
PrimatesDB: a functional resource on skeletal muscle tissue specific transcriptome of the Pan
troglodytes.

11:50-12:00 Introduction to the Special Guest
12:00-13:00 Special Guest talk
Ada Yonath (Nobel Laureate in Chemistry)

Species-specific antibiotics and the microbiome

13:00-14:30 Lunch



Conference program
September 10, 2015

14: 30-15:10 Invited Speaker Talk
Daniel Yekutieli,
Bayesian FDR controlling test procedures.

15:10-15:50 Contributed Regular Talks

Annamaria Carissimo, Luisa Cutillo and ltalia De Feis.
Validation Of Community Robustness

Monika Kurpas and Krzysztof Puszynski.
A simulation study of the relationship between replication stress detection pathway and the
cell cycle.

15:50-16:10 Contributed Short Talks

Antonio Eleuteri.
A commentary on a censored regression estimator.

Kumar Parijat Tripathi, Sonali Chavan, Seetharaman Parashuraman, Marina Piccirillo, Sara
Magliocca and Mario Guarracino.
Comparison of gene expression signature using rank based statistical inference

16:10-16:40 Coffee Break

16:40-18:20 Special Session The EDGE, enhanced definition of genomic entities for syste
ms biomedicine in oncology
Christine Desmedit.
Dissecting the biological complexity of breast cancer.

Emanuela Guerra, Rossano Lattanzio, Marco Trerotola, Pasquale Simeone, Valeria Relli,
Patrizia Querzoli, Enzo Bianchini, Domenico Angelucci, Giuseppe Pizzicannella, Laura
Antolini, Andrea Telatin, Barbara Simionati, Mauro Piantelli and Saverio Alberti. Transcriptomic
analysis of the Trop-2 metastatic program.

Romano Demicheli.
Cancer Images: from invading hordes to pseudo-organ structures.

Giuseppe Marano, Patrizia Boracchi, Elia M. Biganzoli.
Assessment of the robustness of Bayesian P-spline estimation techniques for prognostic
assessment and prediction.

Michele Libutti.
New Techs and oncology in System Medicine.
18:20 Closing day



Conference program
September 11, 2015

8:30-9:00 Registration
9:00-9:40 Invited Speaker Talk

Wessel van Wieringen
Ridge estimation of multiple Gaussian graphical models: individually, simultaneously, and
integratively.

9:40-10:40 Contributed Regular Talks

Davide Chicco and Marco Masseraoli.
Validation Procedures for Predicted Gene Ontology Annotations

Riccardo Rizzo, Antonino Fiannaca, Massimo La Rosa and Alfonso Urso.
A deep learning approach to DNA sequence classification: first results.

Francesco Russo, Dario Righelli and Claudia Angelini.
A walking tour in Reproducible Research and Big Data Management with RNASeqGUI and R.

10:40-11:20 Coffee Break

11:30-13:00 Special Session New knowledge from old data: power of data analysis a
nd integration methods

Guillaume Devailly and Anagha Joshi.
Transcription control in human cell types by systematic analysis of ChIP sequencing data from
the ENCODE.

Leen De Baets, Sofie Van Gassen, Tom Dhaene and Yvan Saeys.
Novel unsupervised learning methods for single cell data visualization and trajectory
inference.

Panayotis Vlastaridis, Stephen G. Oliver, Yves Van de Peer and Grigorios Amoutzias.
Phosphoproteomics: A critical view through the bioinformatics lens.

Bruno Giotti and Tom Freeman.
Meta-analysis of human cell cycle-associated transcripts using published data.

Wilbert Sibanda.
D-Optimal Designs: Differences in HIV risk profiles between Gen X black women and entire
population of black women attending antenatal clinics in South Africa.

13:00-14:30 Lunch



Conference program
14: 30-15:10 Invited Speaker 19#ptember 11, 2015

Cinzia Viroli
Modeling overdispersion heterogeneity in differential expression analysis using mixtures

15:10-15:50 Special Session Regularization methods for genomic data analysis

Julien Chiquet (Invited speaker)
Fast tree inference with weighted fusion penalties

15:50-16:00 External short talk
Asli Ismihan Ozen
NGS data analysis with XploreRNA.

16:00-16:30 Coffee Break

16:30-17:50 Special Session Large-Scale and HPC data analysis in bioinformatics:
intelligent methods for computational, systems and synthetic biology

Fabio Tordini, lvan Merelli, Pietro Lid, Marco Aldinucci and Luciano Milanesi.
nuChaRt: embedding High Performance Computing in R for augmented DNA Exploration

Abhinandan Khan, Rajat Kumar Pal and Goutam Saha.
A novel Technique for reduction of false positives in predicted regulatory networks.

Andrea Tangherloni, Paolo Cazzaniga, Marco Nobile, Daniela Besozzi and Giancarlo
Mauri. Deterministic simulations of large-scale models of cellular processes accelerated on
graphics processing units.

Giacomo Paschina, Daniele D'Agostino, Federica Chiappori, Luca Ravelli and Ivan Merelli.
An Hadoop-based algorithm for clustering Protein Structures

17:50-18:30 Round table and discussion about next CIBB edition
STEERING COMMITTEE

18:30 Closing day

20:00-22:30 Social Dinner at Renzo e Lucia Restaurant



Conference program
September 12, 2015

8:30-9:00 Registration
9:00-9:40 Invited Speaker Talk

Dirk Husmeier
Bayesian inference of antigenic sites in viral evolution

9:40-10:40 Contributed Regular Talks

Paola Lecca and Angela Re.
Identifying modules in Biological network with WG-cluster.

Arianna Consiglio, Corrado Mencar, Giorgio Grillo and Sabino Liuni.
Managing NGS differential expression uncertainty with fuzzy sets.

Mounia Haddoud, Aicha Mokhtari, Thierry Lecroq and Said Abdeddaim.
Supervised term weights biomedical text classification.

10:40-11:20 Coffee Break
11: 20-12:00 Invited Speaker Talk

Michele Ceccarelli
Integrative Molecular Analysis Across Adult Glioma: Novel Relationships Between
Histological Subtypes and Molecular Signatures.

12: 00-12:40 Invited General Chair Talk

Erik Bongcam-Rudloff
Challenges in the annotation of NGS data.

12:40-14:10 Lunch



Conference program
September 12, 2015

14:10-15:00 Contributed short Talks

Emanuel Weitschek, Giulia Fiscon, Valerio Cestarelli, Paola Bertolazzi and Giovanni Felici.
LAF Barcoding: classifying DNA Barcode multi-locus sequences with feature vectors and
supervised approaches.

Giosue' Lo Bosco and Dario La Neve.
Alignment free Dissimilarities for sequence classification.

Eugenio Del Prete, Diego d'Esposito, Maria Fiorella Mazzeo, Rosa Anna Siciliano and
Angelo Facchiano.
A workflow for the comparative analysis of MALDI-TOF mass spectrometric data in
proteomics.

Amit Dubey, Anna Marabotti, Pramod W. Ramteke and Angelo Facchiano.
Ethno-pharmacology Based In Silico Approach Tracing Chymase Inhibitors from Herbal
Nutraceutical Resources.

Sebastian Daberdaku and Carlo Ferrari.
A voxel-based tool for protein surface representation.

15:00-15:50 Special Session Multi Omic metabolic models and statistical
Bioinformatics of adaptations and biological associations (part I)

Claudio Angione, Sandra Pucciarelli, Barbara Simionati and Pietro Lio.
Measuring adaptation to extreme environments with a multi-omic approach.

Antonio Starcevic.
Proteome semantics — application of natural language processing to peptide mass
fingerprinting.

Marco Fondi, Emanuele Bosi, Luana Presta, Pietro Lid and Renato Fani.
Modeling metabolic adaptation to cold shock and substrates switching.

15:50-16:20 Coffee Break



Conference program
September 12, 2015

16:20-17:10 Special Session Multi Omic metabolic models and statistical
Bioinformatics of adaptations and biological associations (part Il)

Basarbatu Can, Arda Durmaz and Osman Ugur Sezerman.
Comparative Analysis of Differentially Expressed Pathways in Mouse with ALS

lvano Zara, llena Li Mura, Andrea Telatin and Barbara Simionati.
SNP-SHOT: integrating annotation sources for target enrichment experiments.

Federica Chiappori.
Psychrophilic protein modeling.

Pietro Tedesco, Fortunato Palma Esposito, Antonio Mondini, Glen Brodie, Renato Fani,
Marcel Jaspars and Donatella de Pascale.
Antimicrobial compounds from Antarctic bacteria.

17:10-17:40 Closing Remarks

17:40 Closing CIBB2015
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CIBB 2015 Invited talks

GENERAL CHAIRS
Claudia Angelini, IAC-CNR, Italy
Adriano Decarli, University of Milan, Italy

Erik Bongcam-Rudloff, SLU Swedish University of Agricultural Sciences,
Sweden



Proceedings of CIBB 2015 (Invited Talk)

Integrative Molecular Analysis Across Adult Glioma: Novel
Relationships Between Histological Subtypes and Molecular
Signatures.

Michele Ceccarelli®:29 | Floris P. Barthel®%), Tathiane M. Malta(*:%), Thais S.
Sabedot(*%), Stefano M. Pagnotta(!), Samreen Anjum(®,, Houtan Noushmehr(¥,
Antonio Tavarone(®), Roel G.W. Verhaak3®®) and LGG-GBM TCGA Analysis Working
Group on behalf of TCGA Research Network

(1) Department of Science and Technology, University of Sannio, Benevento, Italy
(2) Qatar Computing Research Institute, HBKU, Qatar

(3) Department of Genomic Medicine, Department of Bioinformatics and
Computational Biology, & Department of Neuro-Oncology, Department of
Neurosurgery, Department of Pathology,

University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

(4) Department of Genetics, Ribeiro Preto Medical School - FMRP, University of So
Paulo, Brazil

(5) Department of Neurology, Department of Pathology, Institute for Cancer Genetics,
Department of Systems Biology and Biomedical Informatics,
Columbia University Medical Center, New York, NY, USA

(6) The authors contributed equally to this work

Keywords:

Abstract.

Gliomas represent approximately 30% of central nervous system tumors and 80An
unbiased analysis across glioma grades and histologies that integrates all the possible
molecular and genetic information has never been attempted. Therefore, the charac-
terization of the molecular features that mark each of the specific Low Grade Glioma
(LGG) and Glioblastoma (GBM) subgroup remains elusive. Most importantly, current
analyses have not yet clarified the relationships between LGGs and highly malignant
GBMs that share common genetic hallmarks such as IDH mutation or TERT promoter
mutation status. Understanding these relationships is of critical importance in clinical
management of gliomas and will be necessary to evolve to an objective genome-based
clinical classification of these tumors. To address the above questions, we assembled a
dataset comprising all TCGA newly diagnosed glioma consisting of 1,122 patients (516
LGG and 606 GBM), which have been analyzed using multiple molecular platforms
including mRNA sequencing and expression arrays, DNA methylation arrays, exome
sequencing, DNA copy number profiling arrays and targeted proteomics using reverse
phase protein arrays. We address crucial technical challenges in analyzing this compre-
hensive dataset, including the integration of multiple available platforms and sources of
data (e.g. multiple methylation and gene expression platforms) and have extended our
analysis to pediatric gliomas and pilocytic astrocytoma to span the broader spectrum of
glioma. We identified new glioma subgroups with distinct molecular and clinical fea-
tures and may shed light on the mechanisms driving progression of LGG (WHO grades
IT and III) into full-blown GBM (WHO grade IV).



Proceedings of CIBB 2015 (Invited talk)

Challenges in the annotation of NGS data

Erik Bongcam-Rudloff()
(1) Swedish University of Agricultural Sciences, Sweden.
Keywords: NGS, ,

Abstract.



Proceedings of CIBB 2015 (Invited talk)

Computational Challenges in Systems Nanotoxicology

Dario GrecoV

(1) Unit of Systems Toxicology and Nanosafety Research Centre
Finnish Institute of Occupational Health Systems, Finland

Keywords: Engineered nanomaterials, Nanotoxicology, Data integration, Feature selec-
tion

Abstract. Engineered nanomaterials (ENM) are incorporated in many consumer prod-
ucts and human exposure increases as the development of new ENM proceeds. How-
ever, the features that make ENM desirable in various applications have also the poten-
tial to alter the biological properties impacting their safety. The novel field of systems
nanotoxicology aims at studying the nano-bio interactions at multiple levels by compre-
hensive molecular profiling of the exposed cells, tissues and organisms. The aim is to
model the effect of ENMs taking into account the intrinsic physico-chemical character-
istics of the materials in order to help the development of new safe-by-design ENMs.

In the context of the EU FP7 project NANOSOLUTIONS, we are coordinating the
systems biology work package with the aim of developing a computational classifier
able to predict the safety of ENMs. In order to succeed in this task, we need to address
multiple computational challenges related to data integration feature selection, explo-
ration of the solution space, and optimization of the predictive model. In the context
of other projects, we are also inferring the gene regulatory networks that underlie the
specific responses to ENM exposure, both in vitro and in vivo. In addition, we try to
bridge the fields of nanotoxicology and nanomedicine, by systematically comparing the
complex molecular responses to ENM exposure with those specific to drug treatments
in vitro.



Proceedings of CIBB 2015 (Invited talk)

Bayesian inference of antigenic sites in viral evolution

Dirk Husmeier(

(1) University of Glasgow, United Kingdom
Keywords: Bayesian inference, MCMC, Vaccines

Abstract. Understanding how closely related viruses offer protection against emerging
strains is vital for creating effective vaccines. For many viruses, in particular Foot-and-
Mouth disease virus (FMDV) where multiple serotypes often co-circulate, testing large
numbers of vaccines can be infeasible. Therefore the development of an in silico pre-
dictor of cross-protection between strains is important to help optimise vaccine choice.
This is especially the case in sub-Saharan Africa where several South African Territo-
ries (SAT) serotypes are endemic. I will present a sparse hierarchical Bayesian model
for detecting relevant antigenic sites in virus evolution (SABRE), which can account
for the experimental variability in the data. The method uses spike and slab priors to
allow the model to predict antigenic variability and identify sites in the viral protein
which are important for the neutralisation of the virus. Using the SABRE method we
are able to identify a number of key antigenic sites within some of the SAT serotypes,
as well as provide estimates of significant changes in the evolutionary history of the
serotypes. I will show how our method outperforms state-of-the-art mixed effects mod-
els and demonstrate how changing the Markov chain Monte Carlo (MCMC) proposal
method used for the inclusion of variables can offer significant reductions in compu-
tational requirements. This is joint work with Vinny Davies, Richard Reeves, William
Harvey and Francois Maree.



Proceedings of CIBB 2015 (Invited talk)

Ridge estimation of multiple Gaussian graphical models:
individually, simultaneously, and integratively.

Wessel Van Wieringen(!)

(1) Vrije Universiteit, The Netherland

Keywords: Gaussian Graphical models, gene-gene interaction network, penalized re-
gression

Abstract.

Molecular biology aims to understand the molecular processes that occur in the cell.
That is, which molecules present in the cell interact, and how is this coordinated? For
many cellular process, it is unknown which genes play what role. A valuable source of
information to uncover gene-gene interactions are (onco)genomics studies. Such studies
comprise samples from n individuals with, e.g., cancer of the same tissue. Each sample
is interrogated molecularly and the expression levels of many (p) genes are measured
simultaneously. From these high-dimensional omics data the gene-gene interaction net-
work may be unravelled when the presence (absence) of a gene-gene interaction is oper-
ationalized as a conditional (in)dependency between the corresponding gene pair. Then,
under the assumption of multivariate normality, the gene-gene interactions correspond
to zero’s in the precision matrix (which are proportional to the partial correlations).

When dealing with high-dimensional data, the sample covariance matrix is singular
and the sample precision matrix is not defined. But even if p < n and p approaches n,
the sample precision matrix yields inflated partial correlations. Both situations require
a form of regularization to obtain a well-behaved estimate of the precision matrix, and
consequently of the gene-gene interaction network. To this end we study ridge estima-
tion of the precision matrix in the high-dimensional setting. We illustrate its use on the
reconstruction of the gene-gene interaction network from oncogenomics data.

Often the samples included in oncogenomics studies originate from different clinical
groups. Interest then concentrates on differences in the gene-gene interaction network
among the groups. To identify those the aforementioned ridge estimation procedure is
extended to the multi-group case. Its estimation employs a fused ridge penalty, which
penalizes not only the absolute size of the precision elements but also the difference
among the group precisions.

Time allowing, we point out how the proposed ridge estimation framework may learn
dynamic networks from time-course genomics experiments.



Proceedings of CIBB 2015 (Invited talk)

Modeling overdispersion heterogeneity in differential expression
analysis using mixtures.

Cinzia ViroliV

(1) University of Bologna, Italy
Keywords: RNA-seq, Mixture models, Differential gene expression

Abstract. In the last 15 years, the development of massively parallel sequencing plat-
forms for mapping the genome has completely revolutionized the way of thinking and
studying gene expression patterns. The recent Next-Generation Sequencing (NGS)
technologies allow to simultaneously investigate thousands of features within a single
reliable and cost-effective experiment, thus offering a challenging way to enhance our
understanding of how genetic differences affect health and disease. The NGS data are
read counts and they are commonly analyzed by the Negative Binomial probabilistic
model. A relevant issue associated with this probabilistic framework is the reliable esti-
mation of the overdispersion parameter, reinforced by the limited number of replicates
generally observable for each gene. Many strategies have been proposed to estimate
this parameter, but when differential analysis is the purpose, they often result in pro-
cedures based on plug-in estimates, and the discrepancy between the estimation frame-
work and the testing framework can lead to uncontrolled type-I errors. In this talk, a
mixture model framework is presented. It allows each gene to share information with
other genes that exhibit similar variability. Then a consistent statistical test is devel-
oped for differential expression analysis. It is shown through a wide simulation study
that the proposed method improves the sensitivity of detecting differentially expressed
genes with respect to the common procedures, since it reaches the nominal value for the
type-I error, while keeping elevate discriminative power between differentially and not
differentially expressed genes.
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Bayesian FDR controlling test procedures.

Daniel Yekutieli”

(1) Tel Aviv University, Israel.
Keywords: FDR, Bayesian approaches,

Abstract. Bayesian FDR controlling procedures for the two-group model yield almost
identical results to the adaptive Benjamini-Hochberg procedure. In my talk I show that
this is not necessarily the case in more complicated testing problems. I will discuss joint
work with Ruth Heller on establishing replicability in multiple genomewide association
studies, a difficult testing problem that involves testing complex null hypotheses and for
which there is no natural test statistic. I will present our empirical Bayes methodology.
I will explain the relation between the Bayes approach and the BH procedure and why,
in this example, Bayesian FDR controlling methods offer substantially more power (at
the same FDR level) than the BH procedure.
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Validation Of Community Robustness

Annamaria Carissimo®, Luisa Cutillo®, Italia De Feis®

(1) Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
bioinformatics core, carissimo@tigem.it

(2)University of Naples "Parthenope”
DISAQ, luisa.curtillo@uniparthenope.it

(2)Consiglio Nazionale delle Ricerche
IAC, Napoli, i.defeis @iac.cnr.it

Keywords: Community Detection, Networks, Variation of Information, Multiple Test-
ing.

Abstract.

The large amount of work on community detection and its applications leaves un-
addressed one important question: the statistical validation of the results. In this paper
we present a methodology able to clearly detect the truly significance of the communi-
ties identified by some technique, permitting to discard those that could be merely the
consequence of edge positions in the network. Given a community detection method
and a network of interest, our procedure examines the stability of the partition recov-
ered against random perturbations of the original graph structure. To address this issue,
we specify a perturbation strategy and a null model to build a stringent statistical test
on a special measure of clustering distance, namely Variation of Information. The test
determines if the obtained clustering departs significantly from the null model, hence
strongly supporting the robustness against perturbation of the algorithm that identified
the community structure. We show the results obtained with the proposed technique on
simulated and real datasets.

1 Scientific Background

Networks are mathematical representation of interactions among the components of
a system and can be modelled by graphs. A graph G=(V,E) consists of a collection of
vertices V, corresponding to the individual units of the observed system, and a collection
of edges E, indicating some relation between pairs of vertices.

Graphs modelling real systems, i.e. social, biological, and technological networks,
display non trivial topological features. Indeed they present big inhomogeneities, have
a broad degree distribution, with a tail that often follows a power law, i.e. many ver-
tices with low degree coexist with some vertices with large degree, and the distribution
of edges is locally inhomogeneous, with high concentrations of edges within special
groups of vertices and low concentrations between these groups. These properties de-
fine a complex network. In the study of complex networks, a network is said to have a
community structure if the vertices can be divided in g groups (potentially overlapping),
such that nodes belonging to the same group are densely connected and the number of
edges between nodes of different groups is minimal.

The problem of community detection (graph partitioning) consists of finding the
community structure and has been widely studied by researchers in a variety of fields,
including statistics, physics, biology, social and computer science in the last 15 years.
Finding communities within an arbitrary complex network can be a computationally dif-
ficult task. The number of communities, if any, within the network is typically unknown
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and the communities are often of unequal size and/or density. Despite these difficulties,
however, several methods for community finding have been developed and employed
with varying levels of success, see [3], [5], [6], [7], [12] and [14] for reviews.

Although the huge work developed for community detection and its applications, the
question of the significance of results still remains open. The problem is the robustness
of the recovered partition and its validation against randomness.

In this paper we present a methodology able to clearly detect the truly significance of
the communities identified by some technique, permitting to discard those that could be
merely the consequence of edge positions in the network. Given a community detection
method and a network of interest, our procedure examines the stability of the partition
recovered against random perturbations of the original graph structure.

2 Materials and Methods

Variation of Information (VI) is an information theoretic criterion for comparing two
partitions, or clusterings, of the same data set [13]. It is a metric and measures the
amount of information lost and gained in changing from clustering C to clustering C’.
The criterion makes no assumptions about how the clusterings were generated and ap-
plies to both soft and hard clusterings.

Given a dataset D and two clusterings C and C’ of D, with K and K’ non empty
clusters, respectively, VI is defined as

VI(C,C)=H(C)+H(C)-2I(C,C) (1)

where H (C) is the entropy associated with clustering C

K
==Y P(k)log P(k 2)
k=1

and [/ (C,C’) is the mutual information between C and C’, i.e the information that one
clustering has about the other

K K’

, P (kK
1(c,c) ZZPkk W. (3)
k=1 k’'=1

P (k) is the probability of a point being in cluster C} and P (k, k') is the probability that
a point belongs to Cj, in clustering C and to Cy in C'.
Another equivalent expression for VI is

VI(C,C)=H(C|C)+ H(C|C). )

The first term measures the amount of information about C that we loose, while the
second measures the amount of information about C’ that we have to gain, when going
from clustering C to clustering C’.

VI metric is the basis of the hypothesis testing procedure we propose to establish
the statistical significance of a recovered community structure in a complex network.
Our original idea is to generate two different curves based on the VI measure and to
statistically test their difference. The first curve V /¢ would be obtained computing VI
between the partition of our original network and the partition of different perturbed
version of our original network. The second curve V' I¢,4n40m Would be obtained com-
puting VI between the partition of a null random network and the partition of different
perturbed version of such null network. Mimicking the approach proposed by [11] and
[9], we restrict our perturbed networks to having the same numbers of vertices and
edges as the original unperturbed network, hence only the positions of the edges are
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perturbed. Moreover, we expect that a network perturbed only a small amount has just a
few edges moved in different communities, while a maximally perturbed network pro-
duces completely random clusters. Our simplified version of the perturbation strategy
consists in randomly permuting a percentage p of edge from the original graph. Again
a null percentage of permutation p = 0 corresponds to the original unperturbed graph,
while p = 1 corresponds to the maximal perturbation level. The V' Ic and V I ¢, 4ngomare
considered curves as functions of the percentage of perturbation p statistically and a
statistical test is performed to asses the difference between the two curves. This step
is achieved by a time series approach, considering the percentage of perturbation p as
time point; infact its variation from O to 1 induces an intrinsic order to the data structure
as in temporal data, indeed we expect that the V' I of the perturbed network grows with
the perturbation level. Moreover we generate many perturbed graphs (i.e. 10) for each
different level of p and these are considered as replicates per time points in our strategy.
The null model, that is the starting Network related to the V' Ic,qn40m curve, is gener-
ated via the v/ method, a method to generate random graphs having a prescribed degree
sequence [16].
We reformulate the testing problem

Hy : Vlec = VIciandom

s VI
Hy: 1 — =0
0 Og2VI

random
and this permits us to take advantage of two analysis tools set up for time course mi-
croarray data, namely Bayesian Analysis for Time Series (BATS) [1], [2] and Gaussian
Process regression (GP) [10], whose aim is to identify differentially expressed genes in
a one-sample time-course microarray experiment.

3 Results

In order to provide an example of our analysis workflow, we selected a publicly
available biological dataset. The biological dataset considered is a protein- protein in-
teraction network. The S. cerevisiae proteinprotein interaction network we investigate
has 1870 proteins as nodes, connected by 2240 identified direct physical interactions,
and is derived from combined, non-overlapping data, obtained mostly by systematic
two hybrid analyses [8]. In figure 1 we show the degree distribution over the network.
As you can see this protein-protein interaction network belongs to the family of scale
free networks. In Figure 2 we depict the two VI curves corresponding respectively to
the null model (in red) and to the real data (in blue) retrieved with our method using
infomap [15] as a community detection strategy. It is easy to see that these curves are
well separated but we need a statistical validation of this evidence. In this case indeed
BATS testing methods yields a Bayes Factor BF' >> 10 and G P testing method yelds
a p—ovalue << 0.05, both supporting the hypothesis that the originally chosen commu-
nity detection algorithm is robust against the random. Moreover, using the same dataset,
we compared the performance of in fomap to another published community detection
algorithm fastgreedy [4]. The corresponding VI curves plotted in Figure 3 show that
the community structure found by the algorithm ¢n fomap [15] is more robust than that
found by fastgreedy, infact the variation of information corresponding to in fomap
increases slower as a function of the perturbation level. Also in this case both BAT'S
and G P reveal statistical significant difference.

4 Conclusion
In this paper we have described a new algorithm to validate any network cluster-
ing, indeed it can be applied to any community structure with or without overlapping
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Figure 2: protein-protenin network VI curves
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Figure 3: protein-protenin network VI curves

communities. This is a problem long studied in computer science, applied mathemat-

ics,

and the social sciences, but it has lacked a satisfactory solution. We believe the

method described here give such a solution. We address the problem of understanding
when communities found in a network can be considered releable, and not the result of
randomness in network structure. Our method assumes the Variation of Information as
a measure of robustness under perturbations. The application to the real example net-
work, described in the previous section, shows that our method clearly identifies strong
community structures.
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Abstract. Event-related potentials (ERPs) are recordings of electrical activity along the
scalp time-locked to perceptual, motor and cognitive events. Because significant associ-
ation between ERPs and behavioral (or experimental) variables of interest are often rare,
occurring only in brief moments during trials, and weak, relative to the huge between-
subject variability, identification of ERP signals poses major challenges to statistical
analysis. In this 'rare-and-weak’ paradigm, the Higher Criticism method was shown in
a number of recent papers to be optimal to determine signal detection threshold.

However, ERP time dependence exhibits a block pattern suggesting strong local and
long-range autocorrelation components which violates the mild dependence assump-
tion under which signal identification can be achieved efficiently. In high throughput
settings, the detrimental effects of dependence on the accuracy of signal identification
has indeed been widely known and a variety of decorrelation approaches have been de-
veloped to counter them. The presentation first highlights the impact of dependence in
terms of instability of feature selection by Higher Criticism Thresholding. A second
objective is to revisit the above issue using a flexible factor modeling for the covariance.

This framework introduces latent components of dependence, whose maximum-like-
lihood estimation enable decorrelation of the process of test statistics. In high-dimen-
sional settings, the present method, and variants introducing a ¢; —penalized estimation
of the inverse covariance of the process of test statistics, are compared to recent other
decorrelation approaches either based on a shrinkage estimation of the inverse covari-
ance or on its Cholesly decomposition.

1 Scientific Background

High-throughput instrumental data such as event-related potentials and functional
magnetic resonance imaging (fMRI) data have increasingly become common in psy-
chological research. The former provides high temporal resolution to chart the time
course of mental processes, whereas the latter implicates spatial areas in the brain that
might be responsible for experimental effects. With the routine collection of massive
amounts of data from ERP or fMRI studies, researchers must face the challenge of sig-
nal identification: in shifting, simultaneously, through thousands or tens of thousands
of tests for significant relationships with a response variable, a balance must be struck
between keeping a low false positive error rate while maintaining sufficient power for
correct signal identification. How to achieve this objective for ERP data exhibiting ar-
bitrarily strong temporal dependence is the focus of the present paper.
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Searching for time intervals of non-zero signals in ERP data can be viewed as a
signal identification issue in the ’Rare and Weak’ (RW) paradigm introduced by [5].
Large-scale significance analysis of ERP data is indeed based on a m—vector 7" of test
statistics T' = (13, . .., 1y,,)’ where m is the number of time frames, for the collection
of corresponding null hypotheses Hj;, of no association between the ERP measured at
time ¢; and the response variable. The RW setup is defined in [5] as the following sparse
normal mixture model for T': for all ¢,

T ~ (1 —e)N(0,1) +eN(4,1),

where the mixing parameter 0 < ¢ < 1 is the proportion of non-null features and
0 > 0 is the signal amplitude. Note that the normality assumption introduced above
holds for most ERP studies in which the tests for the association between the ERPs and
the response variable is handled by t-tests for the significance of a single parameter.
The alternative parameterization 3. = — log(g)/log(m), rs = (6%/2)/log(m) is often
preferred because it maps both the sparsity parameter (3. and the amplitude parameter
rs into [0; 1], if we observe that the expectation of the maximum test statistics under the
null is bounded by /2 logm. Sparsity of the signal is characterized by 1/2 < 5. < 1
and weakness by rs < 1 (see [10] for details).

The former RW assumption provides a simple yet insightful framework for the study
of procedures, whose aim is to detect the presence of a nonzero signal. Indeed, closed-
form theoretical detection bounds can be derived analytically and [5] demonstrates that
HCT achieves the theoretically optimal decision limits. In the more challenging signal
identification issue, aiming at the selection of non-null features for classification or pre-
diction, [6] also demonstrates the superiority of HCT with respect to FDR-controlling
multiple testing procedures.

As reported in [3], the pronounced auto-correlation observed in ERP data can how-
ever induce a long-range regularity for the test statistics, resulting in spuriously low p-
values outside of the support of the signal, which in turn can result in a misidentification
of the non-null features. This instability of p-values’ranking due to dependence is also
reported in many papers dealing with the impact of dependence on significance analysis
of highly dimensional genomic data (see for example [7, 1, 11]). Equivalently, [9] re-
ports that the theoretical detection bounds derived in the RW framework are markedly
modified by a strong dependence among the test statistics. Therefore, [9] proposes to
extend the RW framework as follows:

T=5+T,

where 9§ is a m—vector of signal amplitudes, in which a small proportion ¢ is non-zero
and Ty ~ N(0;X). If U is the inverse of the Cholesky factorization of 3, namely
UXU’ = I, [9] introduces the so-called innovated HCT (iHCT) as the HCT procedure
applied on the uncorrelated vector of innovations UT = Ud+ U'T; and shows that iHCT
restores the effectiveness of the HCT procedure in situations of strong dependence.

Correspondingly, in the feature selection issue for supervised classification in the
Linear Discriminant Analysis (LDA) context, [1] shows that the HCT procedure is im-
proved by replacing the z-scores 1" by correlation-adjusted z-scores 7% = L~V/2T,
where the inverse-square root of Y is deduced from a James-Stein shrinkage estima-
tor of . As in [7, 11], we propose an alternative approach of innovated HCT based
on a flexible factor model for .. As shown in [3], the complex dependence pattern ob-
served in the correlation structure of test statistics derived from ERP data can be well
approximated using the factor decomposition of >, often with a moderate number of
factors. Moreover, it provides simple and efficient algebraic tools to derive £~/2. A
Cyclic-Coordinate Descent (CCD) algorithm is also presented for a sparse ¢, — penal-
ized estimation of ¥~ 1/2,
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Figure 1: ERP curves for subjects 1 (blue lines) and 2 (orange lines) of the auditory oddball experiment
in conditions Hz500 (plain) and Hz1000 (dashed)
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2 Materials and Methods

In ERP studies, perhaps the most commonly used experimental task is the oddball
paradigm ([12]). In this paradigm, typically two classes of stimuli are presented, one
occurring frequently (standard) and the other occurring infrequently (target). The sub-
ject is required to distinguish between the two stimuli and to respond to the stimuli that
are designated as targets.

An auditory ERP study was performed at Kaohshung Medical University in Taiwan,
providing an illustrative data set for the present investigation. The task uses two pure
tones of 500 Hz and 1,000 Hz. The former is presented 120 out of 150 trials, whereas
the latter (target) is presented only for 30 trials. The order of tone presentation is ran-
dom and the subject is asked to (silently) count the number of targets. At each of 4
electrode locations (Fz, C3, C4, & 01), ERP waveform was obtained from each of the
two tone conditions. For each of the n = 15 participants, the ERP curve begins at -100
milliseconds (ms) and terminates at 400 milliseconds (ms) with two records per 1 ms.
The stimulus onset is at 0 ms. For subsequent analysis, only the ERPs from the electrode
location FZ will be used.

[14] and many other studies have demonstrated that an ERP waveform across the
parieto-central area of the skull is usually observed around 300 ms (the so-called P300
component) and is larger after the target event. The question to be addressed is whether
it is possible to select time points at which ERP features can reliably detect which one
of the two tones was presented to the subject and whether these time points are indeed
around 300 ms as expected. This verification is of fundamental importance if the P300
component is to be considered as an electrophysiological marker for further assessment
of psychiatric and neurological disorders.

It is conjectured that brain activations would be different over different time points
depending on whether participants listen tones of S00Hz or 1000Hz. The data consist
of m = 800 time points measured for n = 15 subjects and J = 2 conditions. Figure
1 shows ERP curves for subjects 1 (solid line) and 2 (dashed line) for condition Hz500
(grey) and Hz1000 (black) as an example. This figure illustrates the large variability
among subjects.

For the ERP measurement Y, at time ¢, on subject j, j = 1,...,n, in condition &,
k =1 for 500 Hz and £ = 2 for 1000 Hz,

Yier = e+ aje+ B + €jne, (D
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where ay = (auy, ..., ay) stands for the subject effect, with > ;e = 0 and By =
(B1t, Poy) for the group effect. The condition 500hz being the reference, we set 31; =
0, so that ¢ — [y is the difference curve. ¢jj; is the random error term, normally
distributed with mean O and standard deviation o;.

In most similar situations, no dependence is assumed among the residual errors € jj:

the random vector €5, = (€jk.t1,Ejkitas - - - » Ejhit,,) 1S assumed to be normally distributed
with mean 0 and variance D, = diag(o7,07,,...,07, ), where diag(.) stands for the

matrix operator which transforms a m-vector into the m x m diagonal matrix whose
diagonal elements are given by the vector. For ERP data, the independence assumption
is relaxed to account for time-dependence: Var(e) = ¥ = DY?RDy/*, where R is a
m X m residual correlation matrix.

T-test process for the difference curve
Auditory ERP data

T T T T T
0 100 200 300 400

Time (ms)

Figure 2: t-tests for the significance of 85; at channel FZ. The dashed grey lines gives the 2.5th and 97.5th
quantiles of the null distribution.

At each time ¢, the null hypothesis which is tested is Hét) : Byt = 0. The corre-
sponding t-test process at channel FZ is displayed in Figure 2. The curve in Figure 2
shows a strong regularity which is not consistent with the expected profile of a process
of independently distributed Student variables. This suggests a strong time-dependence
among tests, which is known to affect the joint null distribution of test statistics. This
strong auto-correlation is confirmed by Figure 3 in which the left panel is a histogram
of the residual correlations of model 1 at electrode FZ and the right panel is an image
plot of the residual correlation matrix. The histogram shows that a large proportion of
correlations are strongly positive. The image plot shows a dependence pattern struc-
tured over time with an obvious auto-correlation component generating a large density
of correlations close to 1 along the diagonal. The dependence pattern appears to be more
complex than just an autoregressive structure of order one, with intervals of highly inter-
correlated time points and an increasing lag-1 auto-correlation over time. The same kind
of dependence is observed at the other electrodes.

The dependence structure of the m—vector of test statistics is directly inherited from
the correlation among the residuals of model 1: Cov(7;,Ty) = ry. Therefore, we
propose the following RW framework for the m—vector of test statistics:

T = §+Tp,

where ¢ is a m—vector of signal amplitudes, in which a small proportion ¢ is non-zero
and Tp ~ N(0;X = ¥ + BB’), where ¥ is a m x m diagonal matrix of specific
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Figure 3: Left panel: histogram of correlations among residuals of model (1) at channel FZ over time.
Right panel: image plot of the time correlations among residuals.

variances whose diagonal elements v)? are in [0; 1] and B is a m x ¢ matrix of factor
loadings, with, for all ¢, ||b; = (be1,...,big) ||* = i, b7 = 1 — ¢7. Note that, using
the following new parameterization:

N

p = ¥z,
0 = U 3B(I,+ BV 'B)3.

It is straightforward checked that ¥~ = (I, — 60")p has also a factor structure.
Therefore, the maximum-likelihood (ML) estimation of ¥ and B, which can be derived
in high-dimension using the EM algorithm presented in [7], also gives an estimator for
the factor parameter of ¥~! and in turn ¥~'/2, Indeed,

SR = (I = Ul + Uy DY) 4 ] 0w,

where U and D are deduced from the singular value decomposition of the standardized
loadings W~/2B = UDV. Hence, an innovated HCT procedure is defined as the HCT
procedure designed by [5] under independence applied to the decorrelated test statistics
T* = %1°T.

Finally, noting that the strong time-dependence in X results in a sparse structure for
¥.~1, we also propose an alternative ¢, —penalized ML estimation of ¥~! which leads to
sparse estimate of 6.

3 Results and partial conclusion

Some variants of HCT procedures are compared hereafter, including the method pro-
posed by [9] based on the Cholesky decomposition of > (iHCT for innovated HCT), the
correlation-adjusted t-tests introduced by [1], based on a James-Stein Shrinkage estima-
tor and the Factor-innovated HCT (F-iHCT) method presented above, taking advantage
of a factor structure for ). The comparison is both based on the application of the
HCT and iHCT procedures to the auditory oddball ERP dataset introduced above and
on intensive simulations under various dependence patterns. We particularly focus on
two criteria: the prediction performance based on the selected features and the number
of selected features. Only partial simulation results are reported here, demonstrating
that an innovated HCT procedure based on a factor decomposition of ¥~ shows desir-
able properties in a simulation scenario which mimics the auditory oddball ERP data
introduced above.
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Figure 4: Simulation study - Signal amplitude curves along time

3.1 Simulation study

1,000 datasets with dimensions 30 x 800 are generated according to a multivari-
ate normal distribution. Both the correlation structure and the within-condition vari-
ances are estimated from the auditory oddball ERP data introduced in section 2. This
simulation plan therefore mimics the auditory ERP data by dimensions and covariance
structure. Each dataset is split into two balanced groups. The normal distribution has
expectation zero for the first 15 subjects (group 1) and the expectation for the 15 last
subjects (group 2) is plotted on Figure 4. The difference curve is therefore a waveform
with various amplitudes and the indices of non null features are in [150ms, 200ms].
1,000 training datasets are generated for each signal strength. Eight corresponding test-
ing data of size 1000 x 800 with two balanced groups are also generated according to
the same simulation plan for a prediction purpose. The RW model parameters for this
simulation plan are e = 12% and Ar = \/2rlog(T") with r taking 8 equally distributed
values in [0.004; 0.688]. According to the RW setup, the present combination of 7 and
B characterizes a not very sparse signal, with a weak to large strength.

As in [6], the variable selection step by different versions of HCT is followed by a
supervised classification by Diagonal Discriminant Analysis on the subset of selected
variables. Four methods are compared in this simulation study:

e Variable selection by standard HCT on raw p-values, classification by Naives
Bayes (see [2]) denoted by Standard HCT;

e Variable selection by HCT on decorrelated test statistics using a shrinkage es-
timator of the whitening matrix (see [1]), classification by diagonal Shrinkage
Discriminant Analysis (SDA, see [1]) denoted by CAT-scores;

e Variable selection by Factor-innovated HCT, classification by conditional Bayes
classifier (proposed by [11]) denoted by F-iHCT;

e Variable selection by standard HCT performed on p-values adjusted for effects of
latent factors as returned by the AFA ([13]) procedure using erpfatest func-
tion of R package ERP ([4]), classification by conditional Bayes classifier (see
[11]) denoted by AFA.
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Figure 5: Results of the simulation study depending on signal strength: False Discovery Rate (top left),
Precision (top right), Number of selected features (bottom left), Prediction error (bottom right).

For all the methods described above, the proportion of signal recovery, called precision,
the false discovery rate (FDR), the number of selected features and the prediction error
rate are computed. For all datasets, variable selection and estimation of classification
rule are performed on training data (including the optimization of meta-parameters) and
prediction error is computed on testing data.

Figure 5 shows that selection by CAT-scores appears to be the most efficient to catch
weak signals, with both the smallest FDR and the largest precision for small amplitudes
of signal. Even if CAT-scores does not achieve the best performance for large signal
strengths, the FDR, precision and number of selected variables are remarkably stable.
Standard HCT seems robust to dependence as the method performs well in term of
FDR but its precision is small regarding methods based on decorrelation. Moreover,
the number of selected variables is also small, which suggests that HCT is conservative
under dependence. Lastly, classification by Naive Bayes fails as the error rates are the
largest for weak to moderate strengths of signal. Variable selection and classification
procedures based on the factor model assumption (AFA and F-iHCT) provide the best
results both in terms of false positive, recovery of the signal and prediction error. FDR
turns out to be small for moderate to high signal strengths and a correct power of signal
identification is achieved.

3.2 ERP data analysis
The 4 methods compared in the simulation study are now applied on the auditory
oddball ERP data presented in Section 2. For each method, the number of selected
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Figure 6: Real data study - Cross-validated prediction error of standard HCT, HCT performed on CAT-
scores, factor innovated HCT and HCT performed on pvalues provided by AFA on auditory ERP experi-
ment for several values of o

features and the prediction error are computed. As the number of observations if small,
the classification error is computed by leave-one-out cross-validation (CV).

Note that the HCT method involves an hyper-parameter 0 < oy < 1, for which
the recommendation varies depending on the authors. Small values of o lead to more
conservative selection procedures. Figure 6 presents the cross-validated error rates for
several values of ay. For values of o larger than 0.15, standard HCT is stable and
performs rather well. For more sparse models, standard HCT reaches larger error rates
and is improved by decorrelation methods based on a factor model assumption (AFA
and F-iHCT). The performance of the CAT-scores method varies slightly depending on
ag. The curves of F-iHCT and AFA are erratic for values of oy smaller than 0.125 but
they stabilize when o increases. For values of o larger than 0.275, F-iHCT and AFA
appear to be the most effective methods as they perfectly classify data. Nevertheless,
one can notice that for equal error rates, the two methods do not select the same features
as shown on the bottom of Figure 7.

Figure 7 shows the curve of the mean difference among the two groups and the time
points selected by the 4 compared methods for oy = 0.125 (top) and oy = 0.275
(bottom). These values of o are chosen because they provide two levels of sparsity
but comparably small CV error. As expected, time points after 300ms are selected by
all methods which is consistent with the literature but time points around 100 ms also
appear to be significant.

To conclude, the AFA and F-IHCT methods which performs decorrelation by adjust-
ment of covariates for the effect of latent factors seem to be the most suitable method in
this example.
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Abstract In computational biology, controlled biomolecular annotations are very useful
to describe the biological function features of genes and gene products through standard
terminologies and ontologies. However, the available annotations contain errors, and
the discovery and validation of new annotations are very time-consuming. Recently, sci-
entists have taken advantage of different machine-learning algorithms to predict these
gene-function relationships. While many of these methods have been easily adapted
to the domain of bioinformatics, a difficult step is the validation of the predicted an-
notations. Here, we illustrate and compare three effective validation procedures that,
together, are able to state the precision of any algorithm predictions with a reliable de-
gree of accuracy. We show some validation results generated on Gene Ontology datasets
of Homo sapiens gene annotations that prove the effectiveness of our validation tech-
niques.

1 Scientific Background

In computational biology, a controlled biomolecular annotation is the association of
a gene or gene product with a biological functional feature expressed through a con-
trolled term, which can be part of a terminology or a controlled vocabulary structured
within an ontology, such as the Gene Ontology (GO) [1]. Thus, the annotation states
that the gene has the functional feature represented by the controlled term. For instance,
the pair <SLCIA6, L-glutamate transmembrane transporter activity> represents the
annotation of the SLCIA6 gene to the L-glutamate transmembrane transporter activ-
ity molecular function. Despite their biological importance, there are some issues with
available annotations, such as the presence of erroneous or missing ones. For this rea-
son, computational algorithms and software tools able to produce ranked lists of reliably
predicted annotations are a useful contribution.

In the past, we designed and developed several algorithms towards this goal. We
started from a state-of-the-art algorithm based on truncated Singular Value Decompo-
sition (tSVD) and developed some variants [2]. Then, in [3] article we designed an
algorithm to choose the best truncation level for the tSVD, in [4] paper we designed and
tested some topic modeling techniques, and in [5] manuscript we took advantage of a
deep neural network approach.

All the prediction pipelines of these projects, as well as of any other similar project,
share a common final pivotal step: the validation of results. Since biomolecular anno-
tations are always incomplete (because our knowledge of biology is such incomplete),
we do not have a ground-truth or gold-standard on which to rely; this makes us unable
to take advantage of the common computational methods widely used for validation in
applied machine-learning domains (such as computer vision or signal processing). To
deal with this issue, we developed a method which assembles three different validation
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procedures that, together, lead to a reliable determination of the predicted annotation
accuracy. Here, we illustrate this method and its three techniques: the analysis of the
Receiver Operating Characteristic (ROC) curves, the comparison between available
annotation versions, and the review of the scientific literature.

After this Scientific Background, Section 2 illustrates our method and the included
validation procedures. Section 3 shows some example results of the proposed validation
method and Section 4 concludes.

2 Materials and Methods

In this section we describe the validation procedures that we assembled and imple-
mented to test the effectiveness of the computational prediction methods: 2.1) ROC
curve analysis, 2.2) comparison between different versions of available annotations,
and 2.3) evaluation against the literature using available web tools.

2.1 Receiver Operating Characteristic (ROC) Curve Analysis

A ROC curve is a graphical plot which depicts the performance of a binary classi-
fier system while its 7 discrimination threshold varies [6]. Since usually in this field a
reference gold-standard is not available, it is used to compare input and output annota-
tions; for example, in [2], for all the possible values of the 7 prediction likelihood, the
algorithm computes the 7' Prate = Sensitivity and F' Prate = 1 — Speci ficity with
respect to the input annotation matrix. Thus, this ROC curve analysis is an efficient tool
to understand the similarity between the input and output annotations of an annotation
prediction method. A ROC curve showing a high area under the curve (AUC) corre-
sponds to having many TPs (annotations present in the input and confirmed as present
in the output) and many TNs (annotations absent in the input and confirmed as absent
in the ouput). This means that the input matrix is very similar to the output matrix, and
the output annotation profiles strongly reflect the input ones. On the contrary, a low
AUC means a lot of differences between the input and output annotations. Given the
comparison with the input annotations instead of with a gold standard, a good predic-
tion should have a fairly high AUC. We consider a prediction insufficiently acceptable
when its AUC is lower than w = 2/3. We chose this heuristic value to indicate that at
least 66.67% of the output annotation matrix should be equivalent to the input matrix,
since usually most of available annotations are correct although some errors and several
missing annotations generally exist.

Despite the effectiveness of this ROC AUC analysis, our two other validation meth-
ods (annotation version comparison and literature review) are more useful and efficient.

2.2 Annotation Version Comparison

When an updated version of the controlled annotations previously used as input to a
prediction method is available, the tally of the annotations predicted (AP) that are found
confirmed in the updated version of the analyzed annotations provides an important val-
idation. Note however that it can give only a lower estimate of the predicted annotation
accuracy, since correctly predicted annotations could not be present in available updated
annotations just because they have not been discovered yet, or simply because they have
not yet been included in the available annotations.

The Genomic and Proteomic Data Warehouse (GPDW) [7] integrates numerous,
multi-organism, gene and protein controlled annotation data from many different sources,
including the Entrez Gene and GO databases. Relevant features of the GPDW are its
periodical updates of the contained data and the storage in the GPDW of their outdated
versions [8]. We leverage them by retrieving from the GPDW different, time distant
versions of the available gene GO annotations, and using them as analyzed annotations
and updated annotations for validation comparison, respectively (Figure 1).
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Figure 1: Flow chart of the validation procedure based on the comparison of database versions.

2.3 Literature Evaluation through Web Tools

The third and last step of our validation procedure is based upon searching updated
literature resources for information supporting the predicted annotations. It is the only
step not fully automated in our pipeline. The sources integrated in the GPDW mainly
contain data from validated experiments, whose results are published in the literature.
Yet, given the numerous research groups working independently all over the world and
the many different journals in which results are published, some validated annotations
published in the literature may have not yet been included in annotation databases. Thus,
a literature review to search for confirmation of the annotations predicted by a computa-
tional method can provide effective validation results. For this last step of our validation
procedure, we leverage the main online paper repository, PubMed [9], and the AmiGO
[10] and GeneCards [11] web tools.

2.4 Evaluation

We applied all the described validation techniques to the gene GO annotations that
we predicted with the methods described in [2]. Such methods are all based on the
popular tSVD, also known as principal component analysis. We re-use the tests made
by Khatri and colleagues [12], based on tSVD with a heuristic fixed truncation level
(SVD-Khatri), and compared their results to those obtained with a tSVD variant that
we developed (SVD-us), where the best truncation level is chosen through a ROC opti-
mization algorithm [3].We also compared two other variants of the tSVD, named SIM1
and SIM2, both described in [2]. For the tests, we used as input the GO annotations of
Homo sapiens genes available in the July 2009 version of the GPDW [7] (i.e. 14,341
annotations of 7,868 genes and 684 GO Cellular Components (CC), 15,467 annotations
of 8,590 genes and 2,057 GO Molecular Functions (MF), and 21,048 annotations of
7,902 genes and 2,528 GO Biological Processes (BP)). For the result validation with
the annotation version comparison techniques we used the corresponding gene GO an-
notations available in the March 2013 version of the GPDW (i.e. 31,135 annotations of
12,033 genes and 1,021 GO Cellular Components, 25,396 annotations of 10,460 genes
and 2,603 GO Molecular Functions, and 64,212 annotations of 11,681 genes and 7,295
GO Biological Processes).
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Table 1: ROC AUC:s for the three Homo sapiens datasets and four prediction methods considered. The
AUC area percentage is always greater than the minimum reliability threshold w, which we heuristically
fixed at 66.67%, except for the SVD-Khatri method applied to the GO CC dataset.

Method CC MF BP Method CC MF BP
SVD-Khatri | 58.98% | 90.06% | 77.24% SIM1 80.94% | 83.58% | 70.20%
SVD-us 83.44% | 85.40% | 75.99% SIM2 81.66% | 83.32% | 68.65%

3 Results

Using the three validation procedures defined, we compared the results and evaluated
the performance of four different annotation prediction methods: (i) the tSVD as used
by Khatri et al. [12] (with fixed truncation level £ = 500 for all datasets), (ii) the
tSVD with truncation level chosen by our automatic algorithm [3], (iii) the SIM1 with
truncation level and cluster number chosen by our automatic algorithms [3], and (iv) the
SIM2 with truncation level and cluster number chosen by our automatic algorithms [3]
and using the Resnik similarity measure [2].

3.1 ROC Curve Analysis

We generated the ROC curves for the considered prediction methods and input datasets,
and report their AUCs in Table 1. Almost all ROC AUCs are greater than w = 66.67%,
which is the minimum “reliability” threshold that we consider for the predictions. Only
the ROC AUC generated by the SVD-Khatri method for the GO CC gene annotations
did not reach that threshold; thus, we do not explore those predicted annotations further.

3.2 Annotation Version Comparison

In the first three cases in Table 2 we report the results obtained with a single GO
sub-ontology dataset as input and output, while the results obtained with the complete
GO dataset (CC+MF+BP) are in the last case in the Table: (a) Our tSVD method always
outperforms the Khatri tSVD method with fixed truncation; the percentage of annota-
tions found confirmed in the new GPDW version (last column) is greater for the MF
and the BP datasets. (b) Our SIM1 method always outperforms the tSVD methods, ex-
cept for the CC dataset, where it has the same performance as our tSVD method, and
for the CC+MF+BP dataset, where the SVD-us outperforms all the other methods. The
percentage of annotations found confirmed in the new GPDW version is greater for the
MF and the BP datasets, and equal for CC dataset, for all the SIM1 tests. (c) Our SIM2
method always outperforms the the SIM1 and tSVD methods, except for the CC dataset,
where they all have the same results; the percentage of annotations found confirmed in
the new GPDW version (last column) is greater for the MF and BP datasets, and equal
for the CC dataset. The complete GO dataset (CC+MF+BP) shows an increased number
of validated predicted annotations, which are much more than the ones predicted in the
single GO sub-ontology tests. In addition, the SVD-us method outperforms SIM1 and
SIM2.

3.3 Literature Evaluation

Once we had the lists of the annotations predicted by our methods, we searched for
confirmation of their existence in the literature, as described previously. Out of the an-
notations predicted with the tSVD method with our best truncation level for each single
GO sub-ontology, we found in the literature the annotations which we then reported in
Table 3. Out of the total 153 annotations predicted (CC: 8, MF: 81, BP: 64), 8 (5.30%)
annotations (MF: 4, BP: 4) were found in published scientific papers, GeneCards or
AmiGO. Out of the total 56 annotations predicted through the SIM1 method (CC: 8,
MEF: 13, BP: 35), 2 (3.57%) annotations (1 MF and 1 BP) were found in published sci-
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Table 2: Comparison of the results of the tSVD with truncation level as in Khatri et al. [12] (SVD-Khatri),
tSVD with our automatic truncation level (SVD-us), SIM1 and SIM2 methods. The 7 threshold minimizes
the sum F'Ps + FNs. C: number of clusters for SIM1 and SIM2. SIM2 uses Resnik’s similarity. APs:
number of annotations predicted; anDB: number of predicted annotations found in the November 2009
GPDW version; upDB (upDB%): number (percentage) of predicted annotations found in the March 2013
updated GPDW version (percentage over the predicted ones). The most important values are bolded: the
percentages of APs found on the updated GPDW version. The values of the ROC AUC of these tests are
in Table 1; the SVD-Khatri, SVD-us, SIM1 and SIM2 methods are described in [2].

Method \ k \ T \ C H APs \ anDB \ upDB \ upDB%
Homo sapiens, GO Cellular Component - CC
SVD-Khatri 500 | 0.45 0 0 0 0.00

SVD-us 378 | 0.49 8 0 4 50.00
SIM1 378 1 049 | 2 8 0 4 50.00
SIM2 378 1 049 | 2 8 0 4 50.00

Homo sapiens, GO Molecular Function - MF
SVD-Khatri 500 | 0.48 108 0 4 5.56

SVD-us 607 | 0.48 81 2 5 6.17
SIM1 607 | 048 | 5 13 0 1 7.69
SIM2 607 | 048 | 5 30 0 3 10.00

Homo sapiens, GO Biological Process - BP
SVD-Khatri 500 | 0.48 358 1 48 13.51

SVD-us 1,413 | 0.45 64 2 12 18.75
SIM1 1,413 | 045 | 2 35 1 10 28.57
SIM2 1,413 | 045 | 5 14 0 8 57.14

Homo sapiens, GO CC+MF+BP
SVD-Khatri 500 | 0.45 794 196 234 29.47

SVD-us 1,905 | 0.43 112 3 51 45.54
SIM1 1,905 | 043 | 2| 116 3 45 38.79
SIM2 1,905 | 043 | 2 || 111 3 49 44.14

Table 3: Homo sapiens GO annotations predicted by our tSVD method (SVD-us, Table 2) and confirmed
in the literature search. If the annotation was added to the latest available Gene Ontology version, its
evidence is reported. The single annotation not found in the version comparison analysis is in bold.

tSVD with truncation level chosen by our automatic algorithm
Sub-Ontology | Gene Symbol | GO Term ID GO Term Name Evidence
MF SLCIA6 | GO:0005313 | L-lutamate transmembrane IEA
transporter activity
MF HDAC6 GO0:0004407 Histone deacetylase activity IEA
MF POR GO0:0004128 | Cytochrome-b5 reductase activity IEA
MF NT5M G0:0008253 5’-Nucleotidase activity EXP
BP ITGA6 GO0:0007155 Cell adhesion IEA
BP ITGA6 G0:0007160 Cell-matrix adhesion IEA
BP CPA2 G0:0006508 Proteolysis IEA
BP AHR GO0:0006805 Xenobiotic metabolic process TAS

entific papers, GeneCards or AmiGO. Out of the total 52 annotations predicted through
the SIM2 method (CC: 8, MF: 30, BP: 14), 4 (7.69%) annotations (3 MF and 1 BP)
were found in published scientific papers, GeneCards or AmiGO.

Through the literature analysis, we found a predicted annotation that was not in the
updated GPDW version, i.e. <ITGAG6, Cell-matrix adhesion> (in bold in Table 3). Out
of the total 153 annotations predicted by our tSVD method, 21 (13.73%) of them were
validated in the updated GPDW version, and we found only 1 additional annotation in
the literature. Given the time required to perform the literature evaluation, this result
may seem very limited; this is why we consider to be more useful and reliable the first
two validation procedures (ROC curve analysis and annotation version comparison),
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particularly the latter one.

4 Conclusions

Validation of functional annotation predictions in biology is always a difficult task.
Available annotations continuously increase while scientists discover new biology; fur-
thermore, some of the available annotations may contain errors, which could be cor-
rected in their subsequent versions. A gold-standard to use in validation is not avail-
able, so stating if a machine learning prediction algorithm is performing well is quite
difficult. In this paper, we illustrated three validation procedures that we developed and
used to validate the GO annotations of Homo sapiens genes predicted through some
computational learning methods. These three techniques mutually compensate for each
others’ strengths and weaknesses and, even if not fully innovative, all together represent
an useful tool to state the quality of biomolecular annotations predicted through any
computational algorithm.

Despite our evaluation of validation procedures using only GO annotations, such
procedures are not bound to the Gene Ontology or even to the biological domain, but
can be used in any scientific validation in which a full gold-standard does not exist or
is always changing. In the future, we plan to improve the use of our overall validation
method by additionally automating the literature evaluation step, through the use of text
mining techniques.
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Abstract. The application of high-performance Next-Generation Sequencing (NGS)
technologies is widely used to characterize case-control comparison studies for RNA
transcripts, such as mRNAs and small non-coding RNAs. The first step in the analy-
sis strategies is mapping NGS reads against a reference database, and a critical issue
is choosing how to deal with multiread problem. In this paper we present a novel ap-
proach to represent and quantify read mapping ambiguities through the use of fuzzy sets
and possibility theory. The aim of this work is to obtain a list of candidate differential
expression events, ordered by significance, providing a description of the uncertainty of
the results due to the multiread issue. A preliminary experiment on a case-control study
of human endobronchial biopsies resulted in the identification of 9 genes with possible
differential expression, four of them with an uncertain fold change. This result was con-
firmed by FDR adjusted Fisher’s test, while the same data processed with DESeq?2 did
not provide significant differences between case and control.

1 Scientific Background

NGS technology is continuously improving and the produced reads are increasingly
numerous. When working with alignment-based methods, a confounding factor is the
presence of gene duplication, repetitive regions and overlapping genes. These events
induce the problem of multireads in the NGS mapping procedure when a significant
proportion of reads map to more than one location. This issue can lead to mistakes and
imprecision in differential expression or alternative splicing analysis based on counts of
reads mapping to some reference databases.

When multireads are sporadic, usually such reads are discarded from analysis, but
this option leads to an underestimation of the read counts. In the last years, alterna-
tive strategies have been developed for the estimation of read counts in presence of
multireads. The simplest choice is to randomly assign multireads to references (as in
best-match mapping) or proportionally to the expression of uniquely mapped reads [1].
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More complex techniques compute an estimation of the read counts using probabilistic
models, based on some assumptions on the distribution of data [2, 3, 4].

The estimated expressions are given as input to the tools for the analysis of differen-
tial expression [5, 6]. Such tools scale the counts in order to make the expression values
comparable, then they compute the fold change and a p-value with a statistical test, and
eventually select a list of candidate differentially expressed genes. These results may
contain many false positives and must be validated with further laboratory assays.

In this paper we propose a novel method, based on fuzzy sets and possibility theory,
that deals with the inherent uncertainty of multiread mapping. The approach used is
compliant with the work of Zadeh [7], who proposed possibility distributions as suitable
interpretations of fuzzy sets. The possibility measure is used in this paper following the
notation introduced by Pedrycz [8].

The aim of this work is to obtain a list of candidate differential expression events
ordered by significance, while also providing a description of the uncertainty of the re-
sults due to the multireads issue, for an easier detection of false positives. The proposed
approach is based on the idea of representing and quantifying read mapping ambiguities
without heavy simplifications or stringent probabilistic assumptions.

2 Materials and Methods

2.1  Fuzzy representation of gene expression

The uncertainty of multireads is modeled through fuzzy sets describing the possibil-
ity that each gene has a given read count. When a read is mapped against a reference
database, we have one of the following results: 1) the read does not map to any reference
sequence; ii) the read maps to only one reference sequence (unique mapping); iii) the
read maps to more than one reference sequence with equal or different mapping quality
(multiple mapping). As a consequence, for each gene we can quantify the number of
reads according to four different cases:

e A = number of uniquely mapping reads;

e 3 =number of reads having the gene as unique best match (i.e. other genes may
match, but with lower quality);

e (' = number of reads having the gene as best match, although not unique (i.e.
other genes may match with the same quality);

e D = number of reads having the gene as match, even if not best.

According to their definition, A < B < C' < D. Tab. 1 shows some examples of
multireads, mapped genes and quality values of mapping (scaled to 1 for each read).

These cases enable the definition of a possibility degree that a given count z is the
real number of reads mapping to a particolar gene. More specifically, this possibility
is null for x < A and x > D, while it is maximal (=1) for B < z < C. A gradual,
increasing possibility can be conceived for A < z < B, while a gradually decreasing
possibility can be assumed for C' < x < D. Linear increase/decrease can be assumed
for simplicity.

The possibility distribution of the gene expression - based on read counts - is deter-
mined by A, B, C and D, and can be defined by a trapezoidal fuzzy set, as follows:

0, r<AVzx>D
z—A’ /
A <z<B
T [A, B,C, D'] () = { B4 <TS 1)
1 B<z<C

z=D' O < g < D
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Table 1: Example of mapping results. For gene gene-1: A = 1,B = 2,C = 3, D = 3. For gene-2:
A=B=0,C=1,D=2.

read id | gene id | mapping quality

read-1 | gene-1 1.0
read-2 | gene-1 1.0
read-2 | gene-2 0.8
read-3 | gene-1 1.0
read-3 | gene-2 1.0

where A’ = A —1and D' = D + 1 to give non-null possibility to counts A and D
respectively. The width of the fuzzy set (1) (defined as D’ — A’) quantifies the uncer-
tainty in the evaluation of the expression value, which in turn generates uncertainty in
differential expression evaluation.

2.2 Graphical comparison of differential expression

For a qualitative evaluation of differential expression of genes in a case-control study,
a graphical method can be proposed as a first approach.

Two trapezoids representing the expression of the same gene in different samples
can be plotted on a 3-dimensional graph, which is useful to fully understand the use
of fuzzy sets and related possibility distributions. The count values for the two exper-
imental samples are drawn on the x axis and y axis respectively, while the possibility
degrees are represented on the z axis. As shown in fig. 1, the Cartesian product of two
trapezoidal fuzzy sets, representing the expression of the same gene in different sam-
ples, yields a truncated pyramid of possibilities (3D plot). The z-value of the pyramid
is the possibility degree that the first sample has x reads and the second sample has y
reads for the gene under consideration.

The projection on a 2D plot highlights two rectangles which bound the possibility:
the innermost covers the area with highest possibility, while the outermost limits the
area with non-null possibility. Larger rectangles represent wider uncertainty, small rect-
angles (possibly degenerating to a single point) represent more definite results. The
position of the rectangle with respect to the bisector line describes the differential ex-
pression result in the case-control comparison.

Z y Y | Over-expressed

<
possibility=1, xO
unchanged EI ‘\660
___ | possibility=0 0
) )
g »
© 8
\('? ~
N 2
S c
>
> & 8
)
Ve 3| |0
% Q Unchanged
2 o possibility=1
o X X
Read counts (control) Read counts (control)

Figure 1: Graphical interpretation of the fuzzy sets and their comparison for differential expression eval-
uation.
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2.3 Fuzzy Fold Change Computation

The proposed quantitative method for the evaluation of differential expression ex-
tends the fold change metric, usually adopted for differential expression, by integrat-
ing fuzzy sets representing uncertain read counts. In particular, given a control sam-
ple with fuzzy expression Tr [A}, By, Cy, D}] and a control case with fuzzy expression
Tr [A}, Ba, Cy, D}, we extend the usual fold change metric to the following fuzzy fold
change metric:

A B D
Tr |log, FZ, log, ?;, log, %, log, A_’; (2)

This trapezoidal fuzzy set follows from the application of the extension principle to the
standard fold change metric, eventually simplified to a trapezoidal fuzzy set for ease of
computation.

The fuzzy fold change is very useful to highlight potential false positives when the
value of 0 (corresponding to null variation between case and control) belongs to fuzzy
fold change with high possibility degree.

2.4 Fuzzy representation of data and differential expression

For a complete differential expression analysis, all the genes of both the case and the
control samples must be taken into account. The last approach we propose ranks the
genes in both samples in order of possibility that their expression in the case and control
is significantly different. This approach combines the fuzzy fold change metric with a
fuzzy representation of the dataset of genes.

In order to analyze the trend of the logarithmic fold change, we represent expression
data in an MA-plot, as in fig. 2 (main plot)!. For simplicity, each gene is represented as
a point and its expression value is the centroid of its trapezoid?.

log2 fold change
0

log2 mean expression

Figure 2: MA-plot of estimated data shows the variability of log2 fold change for low expression values
(main plot). Computation of the differential expression possibility of a gene (projections on the right).

The plot clearly shows that the variability of fold change decreases as the mean ex-
pression value increases. The genes that are distant from the main rhomboidal figure
are the best candidates for differential expression.

In order to rank genes according to their differential expression, we draw two curves
enclosing the right part of the rhomboidal figure (we are not interested in the left part,

!Given two expressions e; and e; of a gene in two samples, the MA-plot places the gene on a plane
(M,A) where M = log,(e1/e2) (the fold change) and A = (1/2)log,(ejes) (average intensity).
21f the centroid falls outside the interval [B, C], it is limited to the closest extreme of this interval.
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because it represents genes with too small expressions). The enclosing curves represent
the limits for a varied expression to be considered as unrelated to the experimental con-
ditions. Therefore, the genes lying on these frontiers can be associated to a possibility
of being differentially expressed equal to 0.5; on the other hand, genes above the upper
curve or below the lower curve have higher possibility of being differentially expressed.

Thereby, it is not difficult to compute a differential expression possibility value for
each gene of the plot. Given a gene, its corresponding point is located in the MA-plot. If
it is located in the left part of the rhomboid, it is excluded from further analysis because
its expression is not significant. Otherwise, in correspondence of its abscissa, the ordi-
nates y T, ¢y~ of the two enclosing curves are produced. Three fuzzy sets are then defined
on the vertical axis: the first fuzzy set represents over-expression, the second fuzzy set
represent insignificant variation, and the third fuzzy set represent under-expression (see
fig. 2, projections on the right). The fuzzy sets representing under-expression and over-
expression are defined in terms of a sigmoidal membership function, while the fuzzy set
representing insignificant variation is defined as a Gaussian fuzzy set. The fuzzy set rep-
resenting under-expression (resp. over-expression) intersects the fuzzy set representing
insignificant variation at yy~ (resp. y*), with membership degree equal to 0.5.

The three fuzzy sets are used to evaluate the possibility of the gene to be differentially
expressed. The fuzzy fold change of the gene is compared to the three fuzzy sets. More
specifically, the possibility measure is computed between the fuzzy fold change and the
under-expression fuzzy set, the insignificant variation fuzzy set, and the over-expression
fuzzy set. (The possibility measure between two fuzzy sets F; and F5 is defined as
II(Fy, F3) = max, min{Fy(z), F5(z)}.) The possibility measure, between the fuzzy
fold change and the fuzzy set representing over-expression (resp. under-expression),
quantifies the possibility that the gene is over-expressed (resp. under-expressed) in the
control sample. The possibility measure between the fuzzy fold change and the fuzzy
set representing insignificant variation evaluates the possibility of false positiveness.

By repeating the procedure for all the genes, a ranked list is eventually produced
with genes sorted according to their possibility of being differentially expressed, and
accompanied with an additional information of possible false-positiveness.

3 Results

The proposed model was tested using two datasets downloaded from NCBI-SRA
archive: DRP000527 and SRP014005. The datasets were mapped against Vega tran-
script database [9], while DESeq?2 [5], Cuffdiff [6] and Fisher’s Exact test p-value (ad-
justed with False Discovery Rate) were used to evaluate differential expression.

The first dataset contains two samples coming from the HeLa cells. In one sample
the U2AF35 gene is suppressed, and no other gene should result differentially expressed
in the analysis results. Illumina reads were mapped using Bowtie. Because of to the
low number of mismatches allowed, all the mapping have the same quality and are
considered as equivalent best matches. In this case in the trapezoids A coincides with B
and C with D. The 17% of mapped reads are multireads. The mapping identified 19486
genes. The U2AF35 gene is the only varied gene, with a possibility = 1. This result was
confirmed by DESeq2, Cuffdiff and Fisher’s test.

The second dataset contains a case-control study of Asthma, through 454 Roche
sequencing of human endobronchial biopsies. 454 reads were mapped using BLAST,
with 97% of identity required. The 16% of mapped reads are multireads. The mapping
identified 14802 genes, 9 genes have a possibility of being differentially expressed >
0.5 and 4 of them have an uncertain fold change. Both centroid data and uniquely
mapping read counts have been processed with DESeq?2, but the tool only warns about
the absence of replicates and outputs no significant differences in the two samples. The
adjusted p-value of Fisher’s test selects 13 differentially expressed genes: 9 of them are
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the same highlighted with fuzzy possibility sets, while the other 4 show a possibility of
being differentially expressed between 0.08 and 0.46 and one of them has also maximum
uncertainty. Cuffdiff cannot be run on 454 data.

4 Conclusion

The described method exploits fuzzy sets to manage the uncertainty in multireads, in
particular during the evaluation of differential expression analysis with NGS RNA-Seq
data. The model has been tested on case-control transcriptomic data produced by Roche
454 and Illumina sequencers.

Gene expressions are represented with trapezoidal fuzzy sets, which represent the
ambiguities resulting from read mapping. Genes are ranked through a possibility mea-
sure of differential expression, accompanied with information about the uncertainty that
could be present in the results, caused by multireads.

The uncertainty representation can also be used just to add information to the results
obtained with other differential expression tools, in order to highlight the risk of false
positives in the results.

The model can also be applied to different types of data, like genomic and metage-
nomic reads, and it will be extended to cope with biological replicates and different
types of sample comparison (e.g. with more than two conditions or time series data).
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Abstract. Maintaining accessibility of biomedical literature databases has led to devel-
opment of text classification systems to assist human indexers by recommending the-
matic categories to biomedical articles. These systems rely on using machine learning
methods to learn the association between the document terms and predefined categories.
The accuracy of a text classification method depends on the metric used in order to as-
sign a weight to each term. Weighting metrics can be classified as supervised or unsu-
pervised according to whether they use prior information on the number of documents
belonging to each category. In this paper, we propose two supervised weighting met-
rics and an extended term representation which both improve the quality of biomedical
document classification.

1 Scientific Background

Medical Subject Headings (MeSH), a controlled set of keywords, are used to index
all the article abstracts contained in the MEDLINE database to facilitate search and re-
trieval. The increasing size of the MEDLINE needs efficient text classification tools
to assist indexers in labeling document texts with the predefined thematic categories of
MeSH [1, 2, 3]. In the two last decades a huge number of machine learning techniques
were proposed to automatically classify text documents. In text classifier systems, doc-
uments are preprocessed in order to be suitable as training data for a learning algorithm.
Traditionally, each text document is converted into a vector where each dimension rep-
resents a term which value is the weight that will be used in the learning process. As the
weight reflects the importance of the term in the document, an appropriate choice of the
metric function used for weighting terms is crucial for correct classification. Common
term weighting metrics for text classification were unsupervised and generally borrowed
from information retrieval (IR) field. The simplest IR metric is the binary representation
BIN which assigns a weight of 1 if the term appears in the document and 0 otherwise.
The term can be assigned a weight TF that reflect its frequency in the document. TFIDF
is the most commonly used weighting metric in text classification. TFIDF is the product
of TF and IDF, the inverse document frequency which favors rare terms in the corpus
over frequent ones. However, there are some drawbacks on using unsupervised weight-
ing functions, as the category information is omitted.

Previous studies proposed different supervised weighting metrics where the docu-
ment frequency factor IDF of TFIDF is replaced by a factor that use prior information
on the number of documents belonging to each category. Several classical metrics were
tested in the literature, for instance, chi-square (x?), information gain (IG), gain ratio
(GR) and odds ratio (OR) [4]. These early studies get an improvement with TF.y?,
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TFIG, TE.GR and TF.OR term weights trained with SVM. Accurate SVM text clas-
sification was obtained using Bi-Normal Separation (BNS) metric for supervised term
weighting [5]. More recently, other specific metrics were proposed for the supervised
term weighting problem. Liu et al. [6] uses a probability based (PB) term weight in
order to tackle the problem of imbalanced distribution of documents among categories.
Lan et al. [7] utilizes a term weight TERF based of the Relevance Frequency (RF)
metric. Altingay and Erenel [8] combined RF metric with mutual information and the
difference of term occurrence probabilities in the collection of the documents belonging
to the category and in its complementary set.

The rest of the paper is organized as follows. Section 2 describes the supervised
metrics we propose for weighting and the corpus used as benchmark. The experimental
comparison of our metrics with those proposed in the literature is presented in Section 3.

2 Materials and Methods

We propose two metrics (One-way Klosgen and Loevinger) and compare them with
10 metrics that have been used for term weighting problem in the literature. We also
propose to represent a text document as a vector where each dimension can be either
term frequencies or term positions.

2.1 Extended term representation

In this classical representation, terms are viewed as the dimensions of the learning
space. A term may be a single word or a phrase (n-gram). In this work, we propose
to represent each dimension by a term together with its minimal frequency in the docu-
ment. Let us consider for example, a particular term ¢ such that 25% of the documents
where ¢ appears are in category c. If 45% of the documents where ¢ appears at least 3
times are in category c, then the term ¢ is probably more correlated with the category ¢
when its frequency exceeds 2. Hence, we propose features of the form (¢, 7) in docu-
ments containing ¢ with a term frequency at least n. If a document d contains ten times
a term ¢, we must generate ten features (¢,47) (¢ = 1,2, ..., 10), meaning that ¢ occurs at
least once, twice,. . ., ten times. This could unnecessarily grow the number of features
so we consider only n powers of 2. Then, if ¢ occurs ten times, we will generate the
features (¢, 1), (t,2), (¢,4) and (¢, 8). The number of frequency features associated to a
term ¢ which appears n times in a document d will only be log, p in the worst case.

Most of the terms that are related to the main topics of a document occur at its be-
ginning. In order to validate this assumption we propose features of the form (t,p),
meaning that the first position of ¢ in the document is lower or equal to p. The position
being defined as the number of words preceding the term occurrence. As for term fre-
quency features, we generate only features (¢, p) with p powers of 2. For example, if a
term ¢ first appears at position 5 in a document of size 100 words, we generate the fea-
tures (¢, 8), (t, 16), (¢,32) et (¢, 64), meaning that the first position of ¢ is lower or equal
than 8, 16, 32 and 64. The number of position features associated to a term ¢ which
appears in a document d at first position p will be log, |d| in the worst case, where |d| is
the size of d in number of words.

2.2 Weighting metrics

We consider a corpus D of N documents and d a particular document of D. Let x
denotes a nominal feature of d representing either, 1) ¢ a term that occurs in d, 2) (¢,n)
a term that occurs at least n times in d, or 3) (¢, p) a term which first position is lower or
equal to p in the document d.

Each document can belong to one or many categories (labels or classes) ¢y, ¢a, . . ., Ck.
We denote by y a particular category ¢;. We denote by Z the fact that the feature x is
not present in d and by ¢ the fact that d does not belong to the category y. The number
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Table 1: Two-way contingency table for nominal feature x (term) and category y (document label). f(uv)
denotes the number of documents containing v and belonging to v. * represents any term or category.

] ] *
v flry)=a flzy)=b  f(zx)
T flay)=c [flzy)=d  f(z«
x  [flxy fy)  fx) =N

Table 2: Expected contingency table for nominal feature x and category y. f (uv) denotes the expected
number of documents containing v and belonging to v under the null hypothesis of independence Hyy.

Y (] *
v f(xy _ f(ﬂﬁ*;\{(*y) ) f(ﬂsgj _ f(ﬂﬁ*)(]\]fv—f(*y)) fj(x*)
z flzy) = EN*f(i\ﬁ;))f(*y) f(zy) = (N:f(x*)])\gN*f(*y)) F(z*)
* S(xy) S(<7) N

of documents containing the feature x and belonging to the category y is denoted by
f(zy) and represents the document frequency. In general, f(uv) denotes the number of
documents containing 1 and belonging to v, u being x, T or % (documents containing any
term) and v being y, ¢ or x (documents belonging to any category). These frequencies
are represented in the contingency Table (Table 1) in which the number of documents is
denoted by N, f(zy) by a and fi1, f(xy) by b and f15, and so on.

Many metrics are based on the estimation of the probability P(uv) the probability
that a document containing u belongs to the category v, u being x, T or * and v being
y, ¥ or x. Under the maximum-likelihood hypothesis this probability is estimated by:
p(uv) = % Some metrics are based on the difference between the observed and the
expected frequencies. The expected contingency frequencies under the null hypothesis
of independence H, are given in the table 2.

Giving a weight to a feature = associated to a term in a document labeled with y
depends on the correlation between x and y in the training corpus. This correlation can
be estimated by different metrics, all the metrics used in this paper depends only on
four values: N the number of training documents, f(zy) the joint frequency, f(x*) and
f(xy) the marginal frequencies. Given these values one can compute the contingency
table and than compute any of the metrics described in Table 3. The first 10 metrics of
Table 3 are those already been used for the problem of term weighting in the literature [4,
9,5, 6,7, 8]. The last 2 metrics Loevinger and One-way Klosgen are proposed by the
authors of this paper. These metrics are collected from papers dealing with association
rules and classification rules [10] and were not used for supervised term weighting in
the litterature.

2.3 Benchmark

In order to compare experimentally the metrics, we use the Ohsumed corpus. Ohsumed
is a test collection that includes 13,929 medical abstracts (6,286 for training and 7,643
for testing) from MEDLINE indexed by 23 cardiovascular diseases MeSH categories.
Ohsumed is small when compared to the entire MEDLINE corpus that contains over 21
million references indexed by 27,149 descriptors in 2014 MeSH. However it was nec-
essary in the first instance to use a small dataset for all the experiments we have done,
namely 120 learn/prediction tasks with 12 metrics, 5 different weighting schemes and
two machine learning methods (see table 5 and 6 next section).

We have done a summary preprocessing on these data and did not use feature selec-
tion in order to compare the weighting metrics independently from other methods of
selecting the terms. Each document was stemmed (Porter stemming) and reduced to a
vector of features representing 1-grams or 2-grams terms. Traditionally the performance
of a classifier on a corpus is estimated by learning the classification on the training data
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Table 3: Metrics used for supervised feature weighting

Metric Mathematical form
IDF 108( 7705y A
Pearson’s ? test Do (fJf;fj)

: 5

Information gain

QOdds ratio
Log odds ratio
Bi-normal separation (BNS)

Probability based term weight
Pointwise mutual information
Relevance frequency
Relevance frequencyopr
Relevance frequency, 2
One-way Klosgen

Loevinger

p(uv)

Zue{w,a’c} Z’UE{ZJ,@} p(uv) log p(ux)p(*v)

a

_1(p($iy)) — F~Y(p(z|y))] (*)
log(1+ %)

p(zy)
108 T ptw)

logy(2 + #(bl))

logy (2 + lpy) (1 —
logy(2 + ey P (2]
Vp(zy) (p(y|z) — p(*y))

_ p(zx)p(xy)
1 p(zy)

(p(zly) — p(z|y)))
y) — p(xly)|

(*) F~T is the inverse Normal cumulative distribution function.

Table 4: Experimented term frequency weights as a function of the frequency #f{(x, d) of a feature x in a

document d

Term frequency weight  Value Description

BIN(x,d) Lif #f(x,d) > 0, 0 otherwise  binary weight

RTF(x,d) iz, d) raw term frequency
LTF(x,d) log(1 + #f(x, d)) term frequency logarithm
ITF(x,d) 1-—- m inverse term frequency

and evaluating the accuracy of the prediction obtained on the evaluation data. The eval-
uation metrics used are the precision which is the proportion of documents placed in
the category that are really in the category, recall which is the proportion of documents
in the category that are actually placed in the category, and the F;-Score is defined as:
F1-Score = % The microaveraged F;-Score is computed globally for all
the categories, while the macroaveraged F;-Score is the average of the F;-Scores com-
puted for each category. This later measures the ability of a classifier to perform well
when the distribution of the categories is unbalanced, while the microaveraged F;-Score

gives a global view of the document classification performance.

3 Results

For each category y, every document d is transformed to a vector 1W; where each
feature x is weighted by : w(x,y,d) = wrp(z,d) X wpp(x,y). Where term frequency
weight wrp (see Table 4) depends on the frequency of x in the document d and doc-
ument frequency weight wpr is one of the metrics described in Table 3. The feature
x represents either a term feature ¢, a term frequency feature (£,n) or a term position
feature (¢, p) as defined in section 2.1. For the classical term representation, we have
experimented three possible term frequency weights (see Table 4). For our model, we
use only binary term weights (wrr(z,d) = BIN(zx, d)), because the frequency of the
term is already considered in the extended term representation = = (¢, n).

In order to estimate the performance of both our model and the 2 metrics we propose,
we have compared the F;-Score of SVM and nearest centroid classification on Ohsumed
documents with classical and extended term representations using different weighting
schemes. For each document frequency weight metric wpr we have experimented 5
weighting schemes:

e raw term frequency weight (wpp = RTF) for term features ¢

e term frequency logarithm weight (wrr = LTF) for term features ¢



Proceedings of CIBB 2015 5

Table 5: F;-Scores of nearest centroid classifier with different term representations and weighting metrics

(t,n)

Term representation t t t (t,n)  &(t,p)

Term frequency weight RTF  LTF ITF  BIN BIN
Microaveraged F;-Score

Loevinger 0.585 0.603 0.610 0.620 0.628
IDF 0490 0.564 0.584 0.604 0.616
Pointwise mutual information 0.506 0.548 0.563 0.585 0.593
Log odds ratio 0.516 0.547 0.559 0.577 0.590
Odds ratio 0.515 0.527 0.530 0.547 0.563
Relevance frequency 0.394 0465 0489 0.513 0.532
Bi-normal separation 0461 0491 0500 0.518 0.531
Relevance frequencyopr 0.388 0.456 0479 0.503 0.518
One-way Klosgen 0468 0.481 0.486 0.495 0.502
Pearson’s 2 0.444 0452 0456 0.463 0.468
Information gain 0.345 0346 0.347 0.357 0.373
Relevance frequency, 2 0.319 0334 0.335 0.325 0.330
Macroaveraged F;-Score

Loevinger 0.568 0.584 0.591 0.604 0.611
IDF 0.441 0536 0.560 0.590 0.603
Log odds ratio 0492 0535 0.548 0.570 0.579
Pointwise mutual information  0.476 0.528 0.545 0.570  0.577
Odds ratio 0.517 0.524 0.526 0.543 0.564
Relevance frequency 0.384 0.463 0491 0.522 0.542
Relevance frequencyor 0.390 0.458 0.481 0.509 0.526
Bi-normal separation 0439 0476 0484 0505 0.513
One-way Klosgen 0.457 0468 0473 0485 0.491
Pearson’s x? 0.440 0.444 0446 0454 0.462
Information gain 0366 0375 0384 0400 0.401
Relevance frequency, 2 0.337 0352 0368 0.360 0.365

Table 6: F;-Scores of SVM classifier with different term representations and weighting metrics

(t,n)

Term representation t t t  (tn) &(t,p)

Term frequency weight RTF  LTF ITF BIN BIN
Microaveraged F;-Score

One-way Klosgen 0.587 0.604 0.609 0.631 0.639
Pearson’s 2 0.593 0.598 0.600 0.618 0.629
Odds ratio 0.563 0.582 0.590 0.617 0.629
Loevinger 0.563 0.579 0.586 0.614 0.626
Bi-normal separation 0.553 0.586 0.593 0.614 0.623
Information gain 0.570 0.583 0.586 0.603 0.615
Relevance frequency, 2 0.548 0.568 0.571 0.590 0.602
Log odds ratio 0497 0.545 0.556 0.587 0.600
Relevance frequencyor 0475 0.531 0.541 0.571  0.588
Relevance frequency 0460 0.521 0.535 0.564 0.583
Pointwise mutual information  0.459 0.520 0.533 0.566  0.582
IDF 0296 0363 0.380 0417 0.444
Macroaveraged F;-Score

One-way Klosgen 0.538 0.569 0.575 0.595 0.602
Pearson’s 2 0.553 0.562 0.568 0.587 0.598
Odds ratio 0.520 0.545 0.553 0.576  0.594
Loevinger 0.518 0.541 0.550 0.580 0.590
Information gain 0.529 0.547 0.550 0.560 0.578
Relevance frequency,» 0.501 0.522 0.524 0.540 0.565
Bi-normal separation 0.468 0513 0.521 0.552  0.564
Log odds ratio 0401 0.461 0476 0.510 0.534
Relevance frequencyor 0.384 0.450 0462 0.504 0.523
Relevance frequency 0.365 0435 0453 0486 0.515

Pointwise mutual information 0.353 0.421 0.439 0.480 0.501
IDF 0.185 0.237 0.255 0.289 0.319
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e inverse term frequency weight (wrp = ITF) for term features ¢
e binary term frequency weight (wrr = BIN) for term frequency features (¢, n)

e binary term frequency weight (wrr = BIN) for term frequency features (¢, n)
and term position features (¢, p)

The Table 5 reports the microaveraged and macroaveraged F;-Score obtained with
nearest centroid classifier considering different term representations and weighting met-
rics (the five table columns represent the five weighting schemes). After calculation of
the F;-Score for each classifier, the metrics are ranked in descending order of the best
weighting scheme score. It is clearly observed from these results that the proposed rep-
resentation model (¢,n) & (¢, p) performs significantly better than the classical repre-
sentation (the three first columns) and achieves the best performances in all experiments
in terms of microaveraged F1-scores for all the metrics. We can also observe that the
proposed Loevinger metric yields to better microaveraged and macroaveraged F1-scores
for all weighting schemes. Table 6 provides the F;-Scores with SVM classification. It
can be seen that by using the One-way Klosgen metric we obtain the best classification
scores on Ohsumed data.

4  Conclusion

In this paper, we have proposed two term weighting metrics that have not been pre-
viousely used for term weighting in the literature. We have also proposed an extended
term representation where the term frequency and the term position in the document
are adequately integrated to the document frequency. We showed that both the met-
rics and the term representation can improve significantly the classification of Ohsumed
biomedical documents. After this study we intend to assess our approach with large-
scale experiments on all MEDLINE corpus with all MeSH categories.
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Abstract. De novo assembly using short reads generated by next generation sequencing
technologies is still an open problem. Although there are several assembly algorithms
developed for data generated with different sequencing technologies, and some that can
make use of hybrid data, the assemblies are still far from being perfect. There is still
a need for computational approaches to improve draft assemblies. Here we propose a
new method to correct assembly mistakes when there are multiple types of data obtained
using different sequencing technologies that have different strengths and biases. We
apply our method to Illumina, 454, and Ion Torrent data, and also compare our results
with existing hybrid assemblers, Celera and Masurca.

1 Scientific Background

Since the introduction of high throughput next generation sequencing (NGS) tech-
nologies, traditional Sanger sequencing is being abandoned especially for large-scale
sequencing projects. Although cost effective for data production, NGS also imposes in-
creased cost for data processing and computational burden. In addition, the data quality
is in fact lower, with greater error rates, and short read lengths for most platforms. One
of the main algorithmic problems to analyze NGS data is the de novo assembly: i.e.
“stitching” billions of short DNA strings into a collection of larger sequences, ideally
the size of chromosomes. However, “perfect” assemblies with no gaps and no errors
are still lacking due to many factors, including the short read and fragment (paired-
end) lengths, sequencing errors in basepair level, and the complex and repetitive nature
of most genomes. Some of these problems in de novo assembly can be ameliorated
through using data generated by different sequencing platforms, where each technology
has “strengths” that may be used to fix biases introduced by others.

*to whom correspondence should be addressed
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Overlap-layout-consensus (OLC) graph based assemblers [1, 2] work well on the
long read assembly. Assemblers that are based on de Bruijn graphs [3, 4, 5] are de-
signed primarily for short reads. Several assemblers use multiple read libraries [6, 7, 8]
for better assembly construction. Additionally, strategies to merge different assemblies
using different data sources into a single coherent assembly are described in literature
(e.g. [9]). Our method differs from that of [9], in both pre- and post-processing steps.

In this work, we propose a method to improve draft assemblies (i.e. produced us-
ing a single data source, and/or single algorithm) by incorporating data generated by
different NGS technologies, and applying novel correction methods. To achieve better
improvements, we exploit the advantages of both short but low-error-rate reads and long
but erroneous reads. We show that correcting the contigs built by assembling long reads
through mapping short and high quality read contigs produce the best results, compared
to the assemblies generated by algorithms that use hybrid data.

2 Materials and Methods

A part of human chromosome 13 was cloned into a bacterial artificial chromosome
(BAC) in a previous study. We sequenced the BAC clone separately using Illumina,
Roche/454, and Ion-Torrent platforms (see Table 1). A “gold standard” reference assem-
bly was also obtained using template-based assembly with Mira [8] using Roche/454
data, which is then corrected using the Illumina reads. Since Roche/454 and Ion Torrent
platforms have similar sequencing biases (i.e. problematic homopolymers), we sepa-
rated this study into two different groups: Illumina & 454 and Illumina & Ion-Torrent,
which gives us the opportunity to compare Roche/454 and Ion-Torrent data.

Table 1: Properties of the data

Technology Length range =~ Mean length Mean base Paired
qual (phred s.)
[llumina 101bp (allreads  101bp 38 paired
have equal
length)
Roche/454 40bp-1027bp  650bp 28 single-end
Ion-Torrent Sbp-201bp 127bp 24 single-end

Technology: The name of the sequencing technology used to produce the reads. Length range:
Minimum and maximum lengths of the generated reads. Mean length: The mean length among
all reads. Mean base qual: The average phred score sequence quality of all reads. Calculated
by summing up all phred scores of the bases in a read and dividing it to sequence length over all
reads. Paired: Represents whether the sequencing is performed as paired-end or single-end.

Pre-processing: First, the reads that has low average quality value (phred score 17,
i.e. >2% error rate) were discarded. Then, the reads with high N-density (with >10%
of the read consisting of Ns) were removed. Third, groups of bases that seem to be non-
uniform according to sequence base content were trimmed. Finally, each assembler’s
pre-processing operations were also inevitably applied.

Assembly: Several assembly tools were used: Velvet [3], a de Bruijn graph based as-
sembler to assemble the short reads; and two different overlap-layout-consensus (OLC)
assemblers: Celera [1], and SGA [2] to assemble the long read data sets (Roche/454 and
Ion Torrent) separately. In addition, a de Bruijn graph based assembler, SPAdes [4] was
also used on the long read data. Then all draft assemblies were mapped to the E. coli
reference sequence using BLAST [10] to identify and discard E. coli contamination due
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to the cloning process. At the end, one short read, and three long read assemblies were
obtained.

Correction: We used BLAST [10] to map the contigs obtained with the short reads
onto the contigs generated by assembling the long reads. Since BLAST may report
multiple mapping locations due to repeats, only the “best” map locations were accepted.
Reasoning from the fact that the short reads show less sequencing errors, the sequence
reported by the short read based contigs were preferred over the long read contigs (LRC)
when there are disagreements between the pair. By doing this, the “less fragmented”
long read assemblies were patched. Figure 1 shows a visual representation of the strat-
egy on correcting the LRCs. The strategy we applied is as follows: if there is a mapping
between a short read contig (SRC) and a LRC, and if the mapping does not start at the
beginning of the LRC, add the unmapped prefix of the LRC. Also, if the mapping does
not start at the beginning of the SRC (very rare situation), add the unmapped prefix of
the SRC with lowercase letters. On the mapping part between SRC and LRC, pick the
SRC values. If the mapping does not end at the end of the SRC (rare), add the unmapped
suffix of the SRC, again with lowercase letters. One may argue that it might disturb the
continuity of the resulting contig, however, we observe such mapping properties very
rarely. The reason for using lowercase letters is to keep track of the information that
there is a disagreement between the SRC and LRC on these sections, so the basepair
quality will be lower than other sections of the assembly. Finally, add the unmapped
suffix of the LRC and obtain the corrected contig.

Evaluation: We mapped each of the final corrected assemblies to the “gold standard”
reference assembly we constructed (described above), and calculated various statistics
based on the comparisons, and estimated assembly qualities (Table 2). We also used two
hybrid assemblers, Celera-CABOG [6] and Masurca [7], with the same data to compare
our correction methodology with those of hybrid assembly algorithms.

non-mapping parts of short read contig

short read contig

long read contig .
—_» mMapping part
e

non-mapping parts of
long read contig ¢

vz e o

corrected contig lowercase

Figure 1: Correction method: Correct the long read contig according to the mapping
information of the short read contig.

3 Results

A summary of the results is presented in Table 2. Briefly, the Velvet assembly using
only the Illumina reads showed better coverage (99%) and high average identity (97.5%)
rates compared to Celera assembly using long reads. Correcting the Celera assembly
with our method improves both coverage and average identity rates, which are then
further improved by reiterative application of our method.

The coverage of 454 assembly increases up to 99.7% and the average identity rate
increases up to 94.4% on the first correction cycle. The repetitive correction cycles
increase the coverage and average identity rates. The cycles are stopped if there is no
improvement (> 0.001) or decrease on the average identity because of the increase on
the coverage. One can see that correcting the long read assembly with the SRCs works
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well with all kind of assemblers. However, corrected SGA assembly has the highest
coverage rate among all.

Assembling short and long reads separately with de Bruijn and OLC graph based
assemblers and correcting them give better results than assembling short and long reads
together with a hybrid assembler such as Masurca or Celera. Masurca seems to have
the best average identity rate on Illumina-Ion Torrent data, but the coverage for this run
is just 1%. Celera-CABOG performs very well on Illumina-454 data, but no better than
corrected SGA or corrected Celera with [llumina and 454. Celera-CABOG does not
have any contigs which successfully map onto the reference sequence, with Illumina-
Ion-Torrent data, because all 487 resulting contigs were eliminated on the E.coli con-
tamination filtering phase.

Table 2: Results of assembly correction method on BAC data.

Name Length # of #of # of Coverage  Avg. # of Size of Gaps
Contigs Mapped Covered Identity Gaps
Contigs bases
Reference 176.843
Velvet
IIL. Velvet 197,040 455 437 175,172 0.99055 0.97523 39 1,671
Celera
454 Celera 908,008 735 735 172,563 0.97580 0.92599 18 4,280
Ion Celera 39,347 27 27 47,638 0.26938 0.96932 47 129,205
Corrected Celera
111-454 Celera 4,945,785 895 270 176,368 0.99731 0.94370 5 475
111-454 Celera®” 5,078,059 890 265 176,640 0.998852  0.944527 4 203
IlI-Ion Celera 93,909 30 28 81,819 0.46267 0.96327 36 95,024
MI-Ton Celera? 145,262 30 28 91,962 0.52002 0.97412 33 84,881
Tll-Ton Celera® 216,167 30 28 99,645 0.56347 0.98066 34 77,198
SGA
454 SGA 62,909,254 108,095 101,514 176,546 0.99832 0.97439 1 297
Ion SGA 842,997 6,417 6,122 153,092 0.86569 0.99124 197 23.751
Corrected SGA
111-454 SGA 295,009 335 335 176,757 0.99951 0.96823 5 86
T11-454 SGA? 279,034 305 305 176,757 0.99951 0.96769 5 86
Ill-Ton SGA 197,509 291 291 175,052 0.98987 0.97501 45 1,791
Ti-Ton SGA2 203,064 291 291 175,676 0.99340 0.97413 34 1,167
SPADES
454 SPADES 12,307,761 49,824 49,691 176,843 1.0 0.98053 0 0
Ion SPADES 176,561 110 107 167,890 0.94937 0.92909 9 8,953
Corrected SPADES
111-454 SPADES 290,702 298 298 176,454 0.99780 0.96538 5 389
Ill-Ion SPADES 198,665 52 52 171,977 0.97248 0.94215 4 4,866
Tll-Ton SPADES? 200,307 52 52 172,101 0.97319 0.94230 2 4,742
Masurca
111-454 Masurca 380 1 0 0 0 0 0 0
Il1-Ion Masurca 2,640 8 8 1,952 0.01104 0.98223 9 174,891
Celera-CABOG
111-454 Celera 1,101,716 891 891 174,330 0.98579 0.92452 12 2,513
Ill-Ion Celera 0 0 0 0 0.0 0.0 0 0.0

Name: the name of the data group that constitute the assembly; # of contigs: the number of contigs that belong to the resulting assembly; # of Mapped Contigs: the
number of contigs that successfully mapped onto the reference sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the
assembly; Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; # of Gaps: The number of gaps that cannot
be covered on the reference genome; Size of Gaps: total number of bases on the gaps.

“2” represents the results of the second cycle of correction, “3” represents the third cycle.

4 Conclusion

Assembly correction by using advantages of different technologies improves the re-
sulting assembly. Here we presented a new method to improve draft assemblies by cor-
recting high contiguity assemblies using the contigs obtained with high quality reads.
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Our results show that our method is useful and it gives better results than using all
data for once with a hybrid assembler compared to the results of two hybrid assemblers.
However, the need to develop new methods that exploit different data properties of dif-
ferent NGS technologies, such as short/long reads or high/low quality of reads, remains.
In this manner, as future work, our correction algorithm can be improved by exploiting
the paired end information of the short, high quality reads after the correction phase, to
fill in the gaps between corrected contigs.
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Abstract. Ataxia telangiectasia mutated and Rad3-related (ATR) detects single-stranded
DNA areas (ssDNA) caused by stalled replication forks. ATR-p53 pathway induces cell
cycle arrest, necessary to repair damage. Using mathematical modeling we examined
how detection of ssDNA influences the cell cycle. Our model confirms that the cell
cycle phase, during which ssDNA are detected, also has the impact on genetic material
susceptibility to damage. Our results indicate that during cell cycle progression, with
increasing cell size, cellular DNA becomes more prone to damage than in early stages
of cycle. Reaction speed rates, which decrease over the cycle, and degree of DNA con-
densation have an impact on strength of DNA damage response. This result may explain
why cells from heterogeneous population exhibit different responses to radiation, what
is commonly observed during biological studies performed on the cell culture.

1 Scientific Background

The cell cycle is the sequence of events during which the genetic material is dupli-
cated and equally segregated to two daughter cells. The cell enters the mitotic cycle
with G1 phase, during which the cell component grows and the volume of the cell in-
creases. G1 phase is then followed by the S phase of DNA replication and G2 phase of
preparation of cell division machinery. The mitotic M phase of cell division starts when
the previous steps were finished without errors. Additionally GO phase can be distin-
guished, as quiescence or senescence phase, containing nonproliferative cells. Special-
ized mechanisms checking the integrity of the DNA, called cell cycle checkpoints, are
present among others between G1 and S as well as G2 and M phases. G1/S check-
point verifies if DNA is undamaged and suitable for replication, while G2/M replication
checkpoint verifies whether all genetic material was replicated and the lesions repaired
before the entry into mitotic division.

Single-stranded DNA areas are often formed after the blockade of the replication
forks progression due to the presence of modifications of the DNA chain, such as
6-4 photoproduct or pirymidine dimer. These forms are often observed after irradiating
cells with ultraviolet radiation (UV). Even without treating cells with any exogenous
factor, we can observe spotaneous lesions formation due to replication errors. Areas of
ssDNA arise also as an effect of double-strand breaks repair that require the resection
of DNA free ends. Detection of such forms is performed by ATR module [1].

P53, the main effector of ATR pathway known also as the ”guardian of the genome”,
is involved in many cellular processes, like DNA repair, cell cycle arrest or apoptosis.
The major inhibitor of p53 is mouse double minute 2 homolog (Mdm?2), the E3 ubiqui-
tin ligase, which marks p53 to the degradation in proteasome. P53 is phosphorylated by
ATR, checkpoint kinase 1 (Chkl) and 2 (Chk2), what additionally ampificates a detec-
tion signal. Chk1 and Chk2 also interact with proteins and complexes regulating the cell
cycle (mainly with components of cyclin-CDK complexes) [2]. P53 transcriptionally
upregulates p21 protein, the potent inhibitor of cyclin-dependent kinases (CDK) [5].
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Very important pair of cyclin-CDK cell cycle regulatory complexes are cyclin B and
Cdkl1 protein kinase. Active complexes drive transition between S, G2 and metaphase
of M phase and are responsible for DNA replication, chromosome condensation and mi-
totic spindle assembly. They are inactivated by the ubiquitin ligase anaphase-promoting
complex/cyclosome (APC/C), which destroys the cyclins responsible for activation of
Cdk1. When the cyclins are degraded, Cdk gets inactivated and APC dominate through
G1 phase. In mammalian cells the APC complex consists of core with many polypep-
tide subunits, and two activators: Cdhl and Cdc20. responsible for recognizing specific
target proteins. At the end of G1 phase cyclin synthesis is induced and their degradation
is inhibited, what causes rising cyclin-CDK activity [3].

1.1  Existing models

There are many models of cell cycle (reviewed in [4]), but very few cover the whole
cycle for non-embryonic eukaryotic cells. The good example of cell cycle model for
eukaryotes is Tyson’s work [3]. It describes cyclin/CDK and APC interactions, making
the core of cell cycle machinery. To our knowledge, except Iwamoto et al. work [5],
there is lack of models of the cell cycle that contain additionally DNA damage detec-
tion module and describe the interactions between proteins and complexes belonging
to both parts. According to our knowledge the proposed model is the first which takes
into account the impact of cell cycle phase on ssDNA fragments formation after UV
irradiation and detection of these lesions.

2 Materials and Methods

A detection system is activated by UV radiation resulting in formation of ssDNA
fragments. Recognition of ssDNA is initiated by coating of single DNA strand by repli-
cation protein A (RPA) complexes, what induces independent movement of Rad17-RFC,
Rad9-Rad1-Husl (9-1-1) and ATR-ATRIP complexes to the site of the damage. ATR
interacting protein (ATRIP) allows to bind ATR-ATRIP complex to RPA-coated DNA
strand, causing ATR autophosphorylation on Ser1989 [1]. ATR protein is then capable
to phosphorylate 9-1-1 complex that after activation recruits topoisomerase 2-binding
protein 1 (TopBP1) important for full ATR activation (through phosphorylation on other
serine residue). Full activation of ATR enables to recognize its phosphorylation targets,
among others Rad17, claspin, RPA, ATRIP, Chk1, Chk2, p53 and H2AX histone.

Presented model is a simplification of processes occuring in the cell during the de-
tection of ssSDNA. Some of the described above interactions are simplified to reduce the
model complexity and the time necessary for completing the calculation. We distin-
guished two cell compartments: nucleus and cytoplasm. Our model takes into account
cell volume, which varies between cell cycle phases and has impact on the reactions
speed.

Our model was built with ordinary differential equations (ODE) with the use of basic
laws known from biochemistry (the law of mass action, Michaelis-Menten kinetics). We
used equations from Tyson’s work [3], which serve as cell cycle core of our model. We
combined them with our previously created model of ATR-p53 pathway [6]. Equations
from ATR-p53 part of the model were multiplied by cell mass from cell cycle model in
order to show dependence of cellular signaling kinetics on cell mass. We rescaled also
Tyson’s model to time-scale and number of molecules observed in average cell line. We
assumed that cell cycle duration is about 24 hours (average time of division in typical
proliferating human cell), but the model can also be rescaled to other cycle lengths. We
found in literature, that maximum amount of cyclin B in cells is 1600000 molecules [8].
We rescaled the model also for this value (fig. 2B). Moreover, we selected mammalian
homologs of proteins used in Tyson’s work. We used cyclin B-Cdk1 complexes, as well
as APC/C activators Cdhl and Cdc20, and polo-like kinase 1 (Plk1). PIk1 is the im-
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portant cell cycle component necessary among others to create a time lag (as observed)
between the rise in cyclin B-Cdk1 activity and the activation of Cdc20.

Figure 1: Schematic representation of the model of ssDNA detection. Solid lines represent changes in
the form of proteins. Dashed lines represent interactions between the model elements. The ATR detector
module is marked with blue color [6].

Equation for cyclin B from Tyson’s work [3] after modification:

d k2"

%CY(JB(t) = kl1—(k2'+ rescODHl(t) + cdl - P53p(t) (1)

+ cd2-CHKL(t) + cd3 - CHK2(t))CY CB(t)

Equation for Cdhl from Tyson’s work [3] after modification:

d (k3 -resc+ k3" - CDC20A(1)) - (resc — CDH1(t))
SCDHL() = i1 oomm 2)

resc

k4-CDHI(t) - resc- kdchkl - CHK1(t) + M@  CYCB()

resc resc

J4 1 CDHI)

resc

New parameters:

e cdl — active pS3-dependent inactivation of cyclin B-Cdk1 complex (through tran-
scriptional regulation of p21) [5]

e cd2 — active Chkl-dependent inactivation of cyclin B-Cdkl complex (through
phosphorylation and inactivation of Cdc25) [2]

e cd3 — active Chk2-dependent inactivation of cyclin B-Cdkl complex (through
phosphorylation and inactivation of Cdc25) [2]
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e kdchkl — active Chk1-mediated degradation of Cdhl1 [9]
e resc — scaling factor for cell cycle

The output of the model is the levels of total concentration and active forms of p53,
Chk1, Chk2 what determines the cell fate. According to Kracikova et al. report [7],
cell fate depends on the level of active p5S3. Two threshold values for p53 are distin-
guished: lower, which causes cell cycle arrest (naturally present in the model, as an
effect of lesions occurrence) and higher responsible for activation of apoptotic pathway.
If p53 level is above this threshold, p53 induces apoptosis through cooperation with Bax
protein. We determined this threshold as equal 2.1-10° by simulation analysis of model
behaviour. If p53 level is continously elevated above this value for more than 6 hours,
we consider this state as apoptotic for more than half of population. We do not take into
account further levels of p53 or level of damage, because due to the degradation of cell
components both levels might be increased.

The developed model is a general attempt to mapping the interaction between the
paths of SSB detection and cell cycle and it is not designed for any particular cell line.

3 Results

Panel 2B shows normal functioning cell cycle. Cell division occurs when level of
cyclin B drops under the treshold of 255800 molecules. Cell cycle is controlled by de-
tection module through active p53-dependent [5], Chk1-dependent and Chk2-dependent
cyclin B deactivation. A very important role is played also by Chk1-dependent Cdhl
inactivation [9], which gives the cell time to repair its damage.

3.1 Spotaneous damage formation

In our model, we implemented replication stress. It is the basal damage level which
continously stimulates ATR-p53 pathway (fig. 2A). Most of ssDNA fragments are de-
tected during S phase when genetic material is replicated. It results in elevated p53 level
during this period and increased susceptibility to the damage (fig. 2E and 2F).

3.2 Correlation between cell cycle phase and susceptibility to the damage

We performed simulation analysis, to examine how the cell cycle phase influences
DNA damage detection and repair. For this purpose, we simulated cell treatment with
dose of 18 J/m?, which we considered as apoptosis threshold in our previous work [6].
We observed that number of lesions and also repair time strictly depends on cell cycle
phase.

The least damages occur in G1 phase (fig. 2C and 2D) when cell is condensed, has
only one copy of the coiled genome and reaction rates are fast because of small cell
volume (there is the biggest probability of molecules meeting). The cell cycle length
was only changed slightly.

In S phase, when genetic material is replicated, probability of lesions arising in-
creases significantly (fig. 2E). Unwinded, prepared for replication DNA is more lesion
prone. Also repair time is extended. As mentioned above, during S phase of cell cycle
occurs the additional replication stress which is normal phenomenon occuring in the
course of replication. Cell cycle progression is being arrested, until all genetic material
is repaired. According to Fingar et al. [10], growth of the cell mass is independent of
cell division — even when cell cycle is arrested, the mass of the cell is still increasing
(fig. 2F).

During G2 phase of cell cycle, when genetic material is replicated, cell is prepar-
ing for mitosis and size of the cell is almost doubled. It implicates decreased reac-
tions speeds and biggest likelihood of the damage. However, DNA lesions are still
repaired because with an increase of cell size, number of repair complexes is also grow-
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ing (fig. 2G). In this case, long-term cell cycle arrest prevents cell before entry to the
mitotic division (fig. 2H).
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Figure 2: Impact of irradiation on cells in various stages of cell cycle. A-B cell cycle without irra-
diation, with considered spontaneous damage during S phase: level of damage, active ATR and active
p53 protein (A), core of the cell cycle (B); C-J irradiation with dose of 18 J/m? in various phases of cell
cycle: level of damage and active p53 protein (left panel), core of the cell cycle (right panel). The mass
of the cell was rescaled to the order of magnitude of proteins involved in cell cycle regulation and does
not reflect the real mass of the cell.

Irradiation during mitotic division destabilizes functioning of all cellular compo-
nents. Lesions are repaired very slowly and active p53 is elevated continously during
the long period of time (fig. 2I). DNA damage is too extensive to be repaired. Cell do
not pass the correct division (fig. 2J). As mentioned before, when the p53 level in the
cell is elevated above given thereshold for at least 6h, the cell is considered as apoptotic
so the future mass growth in the fig. 2J is irrelevant.
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4  Conclusion

Cell cycle regulation is a complicated mechanism still not clearly understood. Mathe-
matical models like the model presented in this work might serve to broaden our knowl-
edge about cellular interactions without costly and long lasting biological experiments.

Our results obtained using the deterministic model indicate that ATR module DNA
damage response is strictly correlated with cell cycle phase. Moreover interactions be-
tween cell cycle and detection module may serve as potential anticancer therapeutic
target.

In the future we plan to investigate the response of heterogeneous population of cells
to irradiation. We will measure fractions of apoptotic cells to recreate conditions in
the in vitro culture. We also plan to perform biological experiments which will give us
necessary models parameters and verification data for our models.
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Abstract. Network modular structure is a pressing challenge to gain great power in
biological discovery from omics data. Most clustering algorithms seek to achieve this
objective through node classification by means of node-related topological or quantita-
tive properties. However, so doing, they disregard the additional richness which is now
possible to introduce by edge weights whose information content is augmenting due
to fast-evolving technical advances of omics profilings. Here, we present WG-Cluster
(Weighted Graph CLUSTERIing), a novel technique for network modular structure re-
construction which, compared to other techniques, exploits network edge