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ABSTRACT
In this work we propose regularised bi-level constraint-based
modelling to determine the fluxomic profiles for four differ-
ent influenza viruses, H7N9, H7M7, H3N2 and H5N1. We
report here the first step of the analysis of the flux data using
AutoSOME clustering, where we identify novel biomarkers
of infection. This is a work in progress that can directly lead
to novel therapeutic targets.
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1 INTRODUCTION
Previous work [6] analysed transcriptomic data to identify
FDA-approved antiviral drugs that would be effective against
the H7N9 Anhui01 influenza virus. This was done by infect-
ing human bronchial epithelial cells cells with H7N9 and
comparing the transcriptomic profile of these with cells in-
fected with H3N2, H5N1 and H7N7. Four replicate samples
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were taken at 3, 7, 12, and 24 hours. A control batch of un-
infected cells was also sampled at the same time. Here we
extend on this work by applying genome-scale modelling to
the transcriptomic profiles of the four strains of influenza
virus H3N2, H5N1, H7N7, H7N9 in order to determine their
metabolic phenotypes.
Standard metabolic models created using FBA (Flux Bal-

anceAnalysis) and constraint-basedmodelling have no unique
solution for the optimal flux vector. The Cobra 3.0 toolbox [4]
introduced a regularisation function so that the optimisation
problem has a single unique solution. We here adapt the reg-
ularisation function to create a novel bi-level linear program
with FBA and regularisation. To our knowledge, this is the
first time this has been reported in the literature. This mod-
elling procedure enables us to predict how the distribution
of flux rates within the cell responds to infection with dif-
ferent influenza viruses. The transcriptomic data from each
individual virus is used to constrain the model to generate a
virus-specific metabolic model for each of the four influenza
strains at each of the four time points sampled.

2 METHODS
Data processing and metabolic modelling
After retrieving the transcripomic datawas fromGEO (GSE49840),
the probe data was matched to HGNC IDs. Where multiple
probes were associated with a single HGNC ID, the gene ex-
pression values were averaged. The replicate samples were
averaged to give a single transcriptomic profile for each time
point. The transcriptomic data was normalised by taking
the ratio of the influenza data to the control data to obtain
the fold change. The normalised transcriptomic profiles of
the influenza viruses were then used to create virus spe-
cific bronchial epithilel cell metabolic models. The metabolic
models were created using constraint based modelling and
flux balance analysis (FBA) of the human epithelial cell aug-
mented with transcriptomics [6] through GEMsplice [1].

Constraint-based modelling with regularisation
In FBA the cell is assumed to be in steady state, Sv = 0,
where S is a stoichiometric matrix of all known metabolic
reactions (metabolites by reactions) and v is the vector of
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reaction by flux rates. Additionally, every reaction flux is con-
strained by lower- and upper- bounds (vmin and vmax). Here
we constrain the strain-specific metabolic models generated
from the transcriptomics data with upper- and lower-bounds
on reactions set as a function of the expression level of the
genes involved in the reactions using GEMsplice [1]. We
set the primary objective as maximisation of hexokinase
[7] and the secondary objective as maximisation of UDP-
N-acetylglucosamine diphosphorylase [10]. We additionally
apply regularisation to the secondary objective function such
that it is maximised subject to the primary objective being
maximised with a penalty term defined as a multiple of vTv .
This is achieved by adding a function that drives minimisa-
tion of the squared flux rates. This state reflects the most
efficient metabolic network. We use the following bi-level
program with regularisation:

max дᵀv −
σ

2
vTv

such that max f ᵀv, Sv = 0,

vminφ(Θ) ≤ v ≤ vmaxφ(Θ).

(1)

The Boolean vectors f and д are weights to select the first
and second objectives respectively to be maximised from
the vector v i.e. hexokinase and UDP-N-acetylglucosamine
diphosphorylase. The vectors vmin and vmax represent the
lower- and upper-bounds for flux rates. The regularisation
function (σ2v

Tv) requires that the sum of the square of the
fluxes is minimised for the maximisation of the second ob-
jective to be obtained. To maintain the optimal value of the
original linear objective whilst minimising the square of the
fluxes, the coefficient, σ , is set to 10−6.
The vector Θ represents the set of gene expression val-

ues for the enzymes catalysing the biochemical reactions
associated with the vector of fluxes v . The upper- and lower-
bounds are constrained depending on the expression levels
of the enzymes and a rule based on the type of enzyme (single
enzyme, isozyme, or enzymatic complex) using the function
φ [2]. Simulations were performed in Matlab R2016b.

Clustering
To cross-compare the fluxomics of the four viruses, flux
distributions were clustered using AutoSOME [8], an un-
supervised SOM-based method for high-dimensional data
that uses a combination of density equalisation, minimum
spanning tree clustering and ensemble averaging strategies.
AutoSOME has the advantage that it does not require prior
knowledge of the number of clusters and is not skewed by
outliers in the data.

3 RESULTS AND CONCLUSIONS
Clustering the influenza sample subsystems according to
their flux profile using AutoSOME resulted in four clusters.

AminoSM

ArgProM

ButaM

D-alaM

GlutamM

GlycolGlucon

GlycolDicarbM

OxidatPhos

PentPhosP

RgroupS

Cluster1 2 3 4

138.68-156.03

H5N1_3
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Figure 1: Heatmap of AutoSOME clustering. A subset of the
subsystems is shown illustrating the variability between the
four clusters.

In agreement with [6], H7N9 shows its own uniquemetabolic
profile. Among the avian viruses at 24 hours of influenza
infection, the metabolic profile of H7N9 is closest to H5N1
though it shares similarities with the H3N2 virus at both 12
and 24 hours [6]. Of the pathways showing strongest pertur-
bations, the pentose phosphate pathway [9], oxidative phos-
phorylation [3] and r-group (de novo viral protein) synthesis
[11] have previously been identified as important in viral
replication. The importance of amino sugar metabolism may
be due to its links with glycolysis [9] and glycoprotein pro-
duction [10]. D-alanine metabolism has not previously been
reported but may be important in the production of pyru-
vate [9] for viral replication. Butanoate metabolism shows a
different profile across the four clusters. Butanoate metabo-
lism has also not previously been reported but may highlight
differences in viral cAMP signalling [5]. These results iden-
tify novel biomarkers of infection, suggesting that further
analysis of the data using machine learning techniques fo-
cussed on these metabolic features could contribute to the
identification of novel therapeutic targets.
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