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Foreword	
	

Welcome	to	IWBDA	2017!	
	
The	 IWBDA	 2017	 Executive	 Committee	 welcomes	 you	 to	 Pittsburgh,	 PA,	 for	 the	
Ninth	 International	Workshop	on	Bio-Design	Automation	 (IWBDA).	 IWBDA	brings	
together	 researchers	 from	 the	 synthetic	 biology,	 systems	 biology,	 and	 design	
automation	 communities.	 The	 focus	 is	 on	 concepts,	 methodologies	 and	 software	
tools	for	the	computational	analysis	and	synthesis	of	biological	systems.		
	
The	 field	 of	 synthetic	 biology,	 still	 in	 its	 early	 stages,	 has	 largely	 been	 driven	 by	
experimental	expertise,	and	much	of	its	success	can	be	attributed	to	the	skill	of	the	
researchers	 in	 specific	 domains	 of	 biology.	 There	 has	 been	 a	 concerted	 effort	 to	
assemble	 repositories	 of	 standardized	 components;	 however,	 creating	 and	
integrating	 synthetic	 components	 remains	 an	 ad	 hoc	 process.	 Inspired	 by	 these	
challenges,	 the	 field	 has	 seen	 a	 proliferation	 of	 efforts	 to	 create	 computer-aided	
design	tools	addressing	synthetic	biology's	specific	design	needs,	many	drawing	on	
prior	 expertise	 from	 the	 electronic	 design	 automation	 (EDA)	 community.	 IWBDA	
offers	 a	 forum	 for	 cross-disciplinary	 discussion,	 with	 the	 aim	 of	 seeding	 and	
fostering	collaboration	between	the	biological	and	the	design	automation	research	
communities.		
	
IWBDA	is	proudly	organized	by	 the	non-profit	Bio-Design	Automation	Consortium	
(BDAC).	BDAC	is	an	officially	recognized	501(c)(3)	tax-exempt	organization.		
	
This	year,	the	program	consists	of	17	contributed	talks	and	14	poster	presentations.	
Talks	 are	 organized	 into	 six	 sessions:	 Experiment-Machine	 Interfaces,	 Design	
Automation,	 Genetic	 Design	 Spaces,	 Modeling,	 Standards	 and	 Domain	 Specific	
Languages,	 and	Machine	 Learning.	 In	 addition,	we	 are	 very	 pleased	 to	 have	 three	
distinguished	 invited	 speakers:	Dr.	 Caroline	Ajo-Franklin	 from	Lawrence	Berkeley	
National	 Lab,	 Dr.	 Randy	 Rettberg	 from	 iGEM,	 and	 Prof.	 James	 Faeder	 from	
University	of	Pittsburgh.		
	
We	 thank	 all	 the	 participants	 for	 contributing	 to	 IWBDA;	 we	 thank	 the	 Program	
Committee	 for	 reviewing	 abstracts;	 and	 we	 thank	 everyone	 on	 the	 Executive	
Committee	 for	 their	 time	 and	 dedication.	 Finally,	 we	 thank	 SynbiCITE,	 Twist	
Bioscience,	 ACS	 Synthetic	 Biology,	 DSM,	 Raytheon	 BBN	 Technologies,	 Cytoscape,	
Amyris,	Teselagen	Biotechnology,	Agilent	Technologies	and	Minres	Technologies	for	
their	 support.	 We	 also	 thank	 The	 University	 of	 Pittsburgh	 for	 hosting	 and	
supporting	IWBDA.	
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Tuesday, August 8th 
08:00 - 07:30 
(August 9th) 2nd BDAthlon programming contest 

   Wednesday, August 9th 
8:00 - 8:35 Arrival, Breakfast, and Registration 
8:35 - 8:50 Opening Remarks 

Natasa Miskov-Zivanov, General Chair 
   Talk Session I: Experiment-Machine Interfaces, Moderator: Evan Appleton 
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James Scott-Brown and Antonis Papachristodoulou 
9:10 - 9:30 Automating Robots with Genetically Engineered Cells 

Keith Heyde, John Lake and Warren Ruder 
9:30 - 9:40 Short Break 
   Keynote I 
9:40 -10:40 Dr. Caroline Ajo-Franklin  

Engineering Microorganisms that Create and Communicate with Materials 
 
Abstract: My research group uses biophysics and synthetic biology to engineer and 
explore the nanoscale interface between living microbes and inorganic materials. We 
are particularly interested in the basic mechanisms underlying charge transfer and 
assembly of materials at this living/non-living interface. In the first part of my talk, I will 
describe how we have engineered bi-directional electronic communication between 
living microbes and non-living systems using synthetic biology. By transplanting 
extracellular electron transfer pathways into the industrial organism Escherichia coli, 
we can confer upon these cells a molecularly-defined route to both accept and donate 
electrons to electrodes. Both current production and current consumption shift the 
metabolism of E. coli in well-defined ways, demonstrating that this electronic interface 
can control intracellular state. In the second part of my talk, I will describe how we 
have used surface-layer (S-layer) proteins as a programmable material. S-layer 
proteins form a highly ordered crystalline, yet porous, layer on the outermost cell 
surface of most species of bacteria and archaea. By engineering S-layers on the 
surface of different microorganisms, we can create arrays that modulate both the 
binding and mineralization of inorganic materials. 
 

10:40 -11:10 Coffee Break 
   Talk Session II: Design Automation, Moderator: TBD 
11:10 - 11:30 A Top-down Approach to Genetic Circuit Synthesis and Optimized Technology 
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Hasan Baig and Jan Madsen 
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Short Break 

   Poster Pitches I 
12:20 - 12:30 Poster Pitches: 1 minute per poster 
   Lunch 
12:30 - 12:35 Announcements 
12:35 - 13:30 Lunch 



   Poster Session and Demos I 
13:30 - 14:30 Poster Session 
   Keynote II 
14:30 - 15:30 Randy Rettberg Title TBD 

 
 
 

15:30 - 16:00 Coffee Break 
   Talk Session III: Genetic Design Spaces, Moderator: TBD 
16:00 - 16:20 Mapping Genetic Design Space with Phylosemantics 

Bryan A Bartley, Michal Galdzicki, Robert Sidney Cox, and Herbert M Sauro 
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9:30 - 9:40 

 
Short Break 

   Keynote III 
9:40 - 10:40 Prof. James Faeder Rule-based modeling of cellular processes 

 
Abstract: In this talk I will discuss challenges faced in developing detailed models of 
biochemical networks, that encompass large numbers of interacting components. 
Many of these same challenges arise iin synthetic biology. Although simpler coarse-
grained models are often useful for gaining insight into biological mechanisms, 
detailed models are often necessary to understand how molecular components work in 
the network context and essential to developing the ability to manipulate such 
networks for practical benefits. The rule-based modeling (RBM) approach, in which 
biological molecules can be represented as structured objects whose interactions are 
governed by rules that describe their biochemical interactions, is the basis for 
addressing multiple scaling issues that arise in the development of large scale models. 
Currently available software tools for RBM, such as BioNetGen, Kappa, and Simmune, 
enable the specification and simulation of large scale models, and these tools are in 
widespread use by the modeling community. I will review some of the developments 
that gave rise to those capabilities and describe our current efforts broaden the appeal 
of these tools as well as to better enable collaborative development of models through 
re-use of existing models and improving visual representations of models. It is 
expected that a number of these advances will also be useful in synthetic biology.  
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Keynote	Presentation	
	

Caroline	Ajo-Franklin	
	

Engineering	Microorganisms	that	Create	and	Communicate	

with	Materials	

	

	

	
Dr.	 Caroline	 Ajo-Franklin	is	 a	 Staff	 Scientist	 at	 Lawrence	 Berkeley	 National	 Laboratory	
(LBNL).	Her	scientific	training	started	in	Chemistry;	she	earned	a	B.S.	in	Chemistry	at	Emory	

University	 in	1997	and	received	her	Ph.D.	 in	Chemistry	 from	Stanford	University	 in	2004.	

She	 then	 trained	 as	 postdoctoral	 fellow	 in	 Synthetic	 Biology	 with	 Pam	 Silver	 at	 Harvard	

Medical	School.	She	started	her	independent	research	career	in	2007	at	Lawrence	Berkeley	

National	Lab	and	was	promoted	to	Career	Staff	Scientist	in	2014.	Dr.	Ajo-Franklin	has	built	a	

strongly	 interdisciplinary	 research	 program	 focused	 on	 engineering	 and	 exploring	 the	

interface	between	living	organisms	and	non-living	materials.	Reflecting	this,	she	now	holds	

appointments	 at	 the	 Molecular	 Foundry,	 the	 Molecular	 Biophysics	 and	 Integrated	

Bioimaging	Division,	and	the	Synthetic	Biology	Institute	at	LBNL.	

	

Her	 research	 group	 uses	 biophysics	 and	 synthetic	 biology	 to	 engineer	 and	 explore	 the	

nanoscale	 interface	 between	 living	 microbes	 and	 inorganic	 materials.	 She	 is	 particularly	

interested	in	the	basic	mechanisms	underlying	charge	transfer	and	assembly	of	materials	at	

this	living/non-living	interface.	In	the	first	part	of	her	talk,	she	will	describe	how	they	have	

engineered	bi-directional	electronic	communication	between	living	microbes	and	non-living	

systems	using	synthetic	biology.	By	transplanting	extracellular	electron	transfer	pathways	

into	the	industrial	organism	Escherichia	coli,	they	can	confer	upon	these	cells	a	molecularly-

defined	 route	 to	both	 accept	 and	donate	 electrons	 to	 electrodes.	Both	 current	production	

and	 current	 consumption	 shift	 the	 metabolism	 of	 E.	 coli	 in	 well-defined	 ways,	

demonstrating	 that	 this	 electronic	 interface	 can	 control	 intracellular	 state.	 In	 the	 second	

part	of	her	talk,	she	will	describe	how	they	have	used	surface-layer	(S-layer)	proteins	as	a	

programmable	material.	S-layer	proteins	form	a	highly	ordered	crystalline,	yet	porous,	layer	

on	 the	 outermost	 cell	 surface	 of	most	 species	 of	 bacteria	 and	 archaea.	 By	 engineering	 S-

layers	on	the	surface	of	different	microorganisms,	they	can	create	arrays	that	modulate	both	

the	binding	and	mineralization	of	inorganic	materials.	



Keynote	Presentation	
	

Randy	Rettberg	
	

	

	
President	and	Founder	of	the	iGEM	Foundation	

	

Randy	 Rettberg	 is	 the	 President	 and	 Founder	 of	 the	 iGEM	 Foundation.	 The	 foundation’s	

primary	 programs	 are	 the	 International	 Genetically	 Engineered	 Machine	 competition	

(iGEM),	 which	 is	 the	 premier	 educational	 program	 in	 synthetic	 biology,	 and	 the	 iGEM	

Registry	of	Standard	Biological	Parts,	the	largest	collection	of	standard	biological	parts	for	

the	synthetic	biology	community.	iGEM	began	at	MIT	in	2003	with	a	January	undergraduate	

design	course.	The	first	intercollegiate	competition	was	in	2004.	By	2015,	iGEM	has	grown	

to	over	280	teams	in	37	countries,	including	40	high	school	teams.	

	

Prior	 to	 2001,	 Randy	 was	 an	 executive	 in	 the	 computer	 industry	 working	 for	 Apple	

Computer	and	Sun	Microsystems.	Randy	began	his	computer	and	networking	career	at	Bolt	

Beranek	and	Newman	as	part	of	 the	ARPANET	development	team.	At	BBN,	Randy	worked	

on	the	early	Internet	and	computer	architecture.	In	2001,	after	a	29-year	tech	career,	Randy	

returned	to	MIT	to	work	with	Dr.	Tom	Knight	to	develop	the	field	of	synthetic	biology.	

	

	

	

	

	

	

	

	

	



Keynote	Presentation	
	

James	Faeder	
	

Rule-based	modeling	of	cellular	processes	

	

	

	
Prof.	 James	 Faeder	 is	 Associate	 Professor	 of	 Computational	 and	 Systems	 Biology	 at	 the	
University	 of	 Pittsburgh	 School	 of	 Medicine.	 He	 is	 also	 Co-Director	 of	 the	 Joint	 Carnegie	

Mellon--University	of	Pittsburgh	Ph.D.	Program	in	Computational	Biology	and	Department	

Vice	 Chair	 for	 Educational	 Programs.	 His	 research	 focuses	 on	 computational	modeling	 of	

cell	regulatory	networks.	His	research	combines	development	of	novel	methodologies	with	

applications	 to	 specific	 systems	 of	 biological	 and	 biomedical	 relevance,	 including	 the	

immune	 system	 and	 cancer.	 He	 collaborates	 actively	 with	 experimental	 scientists	 both	

within	 the	University	of	Pittsburgh	as	well	as	nationally	and	 internationally.	His	work	has	

been	published	in	many	high-profile	 journals	including	Science	Signaling,	Nature	Methods,	

PLOS	 Computational	 Biology,	 and	Bioinformatics.	 Dr.	 Faeder	was	 a	 founding	 organizer	 of	

the	well-known	 q-bio	 Conference	 on	 Cellular	 Information	 Processing,	 is	 a	member	 of	 the	

Board	 of	 Reviewing	 Editors	 of	 Science	 Signaling,	 and	 has	 served	 as	 ad	 hoc	 member	 of	

numerous	NIH	study	sections.		
	
In	 this	 talk,	he	will	discuss	 challenges	 faced	 in	developing	detailed	models	of	biochemical	

networks,	 that	 encompass	 large	 numbers	 of	 interacting	 components.	Many	 of	 these	 same	

challenges	 arise	 in	 synthetic	 biology.	 Although	 simpler	 coarse-grained	 models	 are	 often	

useful	for	gaining	insight	into	biological	mechanisms,	detailed	models	are	often	necessary	to	

understand	 how	 molecular	 components	 work	 in	 the	 network	 context	 and	 essential	 to	

developing	 the	 ability	 to	manipulate	 such	 networks	 for	 practical	 benefits.	 The	 rule-based	

modeling	(RBM)	approach,	in	which	biological	molecules	can	be	represented	as	structured	

objects	 whose	 interactions	 are	 governed	 by	 rules	 that	 describe	 their	 biochemical	

interactions,	is	the	basis	for	addressing	multiple	scaling	issues	that	arise	in	the	development	

of	large	scale	models.	Currently	available	software	tools	for	RBM,	such	as	BioNetGen,	Kappa,	

and	Simmune,	enable	the	specification	and	simulation	of	large	scale	models,	and	these	tools	

are	 in	 widespread	 use	 by	 the	 modeling	 community.	 He	 will	 review	 some	 of	 the	

developments	that	gave	rise	to	those	capabilities	and	describe	our	current	efforts	broaden	

the	appeal	of	 these	 tools	 as	well	 as	 to	better	 enable	 collaborative	development	of	models	

through	 re-use	 of	 existing	 models	 and	 improving	 visual	 representations	 of	 models.	 It	 is	

expected	that	a	number	of	these	advances	will	also	be	useful	in	synthetic	biology.	
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ABSTRACT
Using robots to automate laboratory tasks could increase
throughput and reproducibility, but requires experimental
protocols to be specified in a computer-readable format. We
present a new user interface (‘Lists of Liquids’) for spec-
ifying experimental protocols by directly manipulating a
task-graph: rather than having to specify individual liquid
handling operations, the user can simply specify that particu-
lar lists of Aliquots should be combined as either a Cartesian
product or convolution, and the system will plan a series
of liquid handling steps to achieve this. This is intended to
provide a higher-level interface that may make the creation
of protocols faster and less error prone.

As an alternative to the graphical interface, the same
abstractions are also provided through a python package and
a textual domain-specific language.

KEYWORDS
high-level programming language; lab automation; rapid pro-
totyping; reproducibility
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1 INTRODUCTION
There have been various attempts at constructing formal
languages for expressing experimental protocols. These are
intended to reduce ambiguity compared to natural language
and enable either a robot to automatically execute a proto-
cols, or a computer to guide a human operator through a
protocol. These include both textual interfaces (e.g. BioCoder
[1], PaR-PaR [6], Aquarium [4], Autoprotocol [8], Antha [7],
and Symbolic Lab Language [5]) and graphical interfaces
(e.g. BioBlocks [3], Wet Lab Accelerator [2], and proprietary
tools from robotic systems manufacturers).

However, these interfaces place the primary focus on the
specific liquid handling steps to be performed, rather than
their intended results. We present here an interface that
reverses this focus, allowing the user to specify operations at
a higher level, and have the computer plan the lower-level
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2017. ACM ISBN . . . $15.00
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details. In our system, the user expresses what they want
to achieve at a high level, and the system determines what
movement of liquids between physical locations are necessary
to achieve this.

Regardless of which interface is used, it is possible to pro-
duce a range of outputs, including a diagram of the specified
operations, a list of what each physical well will ultimately
contain, and an executable protocol in Autoprotocol format.

2 MODELLING CONCEPTS
We keep track of Aliquot objects, which contain a speci-
fied Volume of one or more liquids. Some of these are ini-
tially present, and can be regarded as inputs to the protocol
(e.g. reagents or samples to be analysed). Others are de-
fined as the result of mixing operations that are part of the
protocol.

Two or more Aliquots can be combined to obtain a new
Aliquot. Alternatively, an Aliquot can be combined with
a Volume, producing a new Aliquot object with the same
proportional composition but the specified volume.

As well as combining two single objects, it is possible
to combine two lists of objects. This can be done in two
ways: given two lists x and y, the Cartesian product/cross
product independently combines every element of x with
every element of y, whereas the convolution/zip operation
combines each element of x with only the corresponding
element of y.

3 GRAPHICAL INTERFACE
The graphical interface is implemented as a web-application.
The back-end is written in Python using the Flask framework;
the front-end is written in Javascript using the D3 library.
Once a user has logged in they are able to create a new
protocol, or edit a protocol that they have previously created.

Protocols can be represented as Directed Acyclic Graphs,
and drawn as node-link diagrams in which the nodes are
Aliquot objects (or lists of Aliquot objects), and the opera-
tions that combine these (e.g. zip and cross). Volumes are
labeled on the corresponding arrows.

Right-clicking on the background displays a context menu
that allows the user to add an initially present Aliquot

object.
The user can click on a node and drag onto another to

indicate that they should be combined; this creates nodes
corresponding to the combination operation and the resulting
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Figure 1: Screenshot of editor (left) and close up view (right). The protocol is for a PCR experi-

ment, in which 2 µL of each DNA sample is separately mixed with 0.8 µL of each left primer (and

0.8 µL of the corresponding right primer), combined with 16.4 µL of PCR master mix, and thermo-

cycled. In the corresponding domain-specific language, the liquid-handling part of this protocol could

be specified as 16.4 microliter from master mix + 2 microliter from sample plate CROSS (0.8 microliter from

left primers ZIP 0.8 microliter from right primers). In alternative systems, the user would instead specify

individual liquid handling operations, such as which DNA samples should be transferred to which locations

on a PCR plate.

object. A context menu allows the operation type to be
changed.

The diagram visually distinguished di↵erent ways in which
things can be combined: a solid arrow indicates that the
corresponding Aliquots remained in the same well as things
were done to them. When two things are combined, the first
could be added to the second (dashed arrow from first, solid
arrow from second), the second could be added to the first
(dashed arrow from second, solid arrow from first), or both
could be added to a new, empty, container (dashed arrows
from both). By default, it is assumed that the Aliquots that
were dragged are added to the Aliquots they were dragged
onto, but this can be changed via a context-menu.

Other operations that perform some kind of processing
(rather than simply combining liquids), such as thermocycling,
can also be created by right-clicking on the background;
dragging from an Aliquot to the newly-created node then
indicates what the operation should be performed on.

Clicking on a node selects it, displaying its details in an
information panel through which they can be edited. For
Aliquot nodes, this displays the contents of each element
of the list, which cannot be directly edited. For processing
operations, this allows the relevant parameters to be edited
(e.g. temperatures and durations for thermocycling).

4 FUTURE WORK
Future work will expand the range of output options, so that
Lists of Liquids can be interfaced with more systems, and
validate it by using it practically for wet lab experiments.

It is also intended to provide additional user-interface
refinements, including the ability to select a subgraph of the

complete task graph, and collapse this into a single block to
reduce visual clutter, or indicate that it should be repeated.

A link to a demo of the tool, and its source code, will be
available at http://sysos.eng.ox.ac.uk/tebio/protocols.
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ABSTRACT 
We have demonstrated a new method for controlling the behavior 
and motion of mechatronic systems using genetically engineered 
organisms. We developed a fully automated system that cultures 
synthetically engineered living cells within a microfluidic 
channel. This was accomplished using open-source syringe pumps 
designed and built in-house. We coupled this fully automated 
bioreactor with an epifluorescence microscope that imaged the 
entrapped cells once every ten minutes. Then, using custom-built 
software, the images were processed, allowing us to compute a 
single digital signal based on the relative abundance of red or 
green fluorescent proteins. This signal was then used to control 
the motion of a robot through a simulated environment. To close 
the information loop, these simulated robots were allowed to 
interact with different simulated carbon sources. The 
corresponding physical carbon source was then injected into the 
microfluidic channel. In this manner, engineered cells acted as 
both a sensing platform and as a processing unit for the simulated 
robot.  
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• Applied computing → Systems biology 
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1 INTRODUCTION 
The natural world has served as inspiration for the 

design of automated robotic systems. By mimicking key 
physiological traits such as the surface properties of gecko feet1, 
engineers have been able to build impressive artificial system that 
inform us about the natural world while optimizing performance. 
Similarly, the natural world has served as inspiration for control 
and processing components. Mutations, heredity, and fitness 

constraints that drive the evolution of living organisms served as 
inspiration for genetic algorithms, and the complex adaptive 
behavior of living brains led to the development of neural 
networks2.  

However, genetic processes and neural plasticity are not 
the only features that control behavior in the natural world. 
Increasingly, the microbiome, the collection of microorganisms 
living within a host organism, has been shown to affect the health 
and behavior of the host3. However, understanding the 
complexities of these interkingdom signaling networks is 
challenging due to the vast spatial and genetic heterogeneity of the 
microbiome4.  

Inspired by the strong connection between the 
microbiome and the host organism’s behavior, we set out to 
develop a minimal, simplified system that allowed us to automate 
the behavior of a mechatronic “host” system using the state of a 
population of engineered living “microbiome” cells. We did this 
by building a fully automated bioreactor system that used 
mechatronic hardware and controls in conjunction with a 
microfluidic chip and an epifluorescence imaging system. Upon 
imaging the phenotypic state of our entrapped bacteria, we would 
process the image and use the resulting relative intensities of 
green or red fluorescent proteins to drive the motion of a robot.   

2 EXPERIMENTAL DETAILS 

2.1 Synthetically Engineered Cells 
We cultured a population of genetically engineered Escherichia 
coli (E. coli) cells that contained a genetic toggle switch. This 
genetic feature is characterized by two bistable states of mutual 
repression.  In practice, a well-engineered toggle switch behaves 
like a digital bit, with two mutually exclusive states. For our 
system, these two states were flipped by exposing cells to either 
arabinose or Isopropyl β-D-1-thiogalactopyranoside (IPTG). The 
two states corresponded to the production of a green fluorescent 
protein and a red fluorescent protein (mCherry) respectively. This 
feature created a sustained optical response from the engineered 
cells that corresponded to a transient chemical pulse.  
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Figure 1: Using Engineered Living Cells to Automate the 
Behavior of a Simulated Robot 

2.2 Microfluidic Bioreactor and Liquid Handling 

We designed and fabricated a microfluidic bioreactor based off of 
previously published work. The bioreactor design was chosen to 
keep E. coli cells entrapped within an optical plane, while still 
maintaining the cells within an exponential phase of growth. We 
coupled this bioreactor with a set of three, custom-built syringe 
pumps controlled with a computer-linked Arduino 
microcontroller. Using a piezoelectric pressure transducer, the 
syringe pumps were able to control effluent fluid pressure. By 
filling the syringes with different concentrations of media, 
arabinose, and IPTG, the chemical composition of the fluid 
pumped into the microfluidic bioreactor could be well regulated.  

2.3 Image Acquisition and Processing 

The microfluidic bioreactor was placed on top of a Nikon Ti-E 
microscope and images were captured using a mounted Andor® 
Zyla Scientific CMOS camera. Once images were taken and 
background calibrated, using the Nikon Elements software 
package, a custom-built software package would compare the 
relative intensity of the green and red proteins. This relative 
intensity would then be sent to a finite state machine that 
governed a digital signal used to control robot behavior. All 
custom-built software was coded in Python 2.7. 

2.4 Robot Simulation and System Feedback 

We simulated a manipulator robot within a 2D virtual 
environment using a custom-built python script. The behavior of 
this robot was governed by the digital signal sent to it from the 
finite state machine described in section 2.3. Depending on the 
incoming signal, the simulated robot would actuate through a 2D 
arena containing targets corresponded to arabinose or IPTG. 
When the robot was in contact with one of the targets, then it 
would send a signal to the syringe pumps described in section 2.2, 
which would inject the corresponding chemical into the 
microfluidic channel.  

2.5 System Integration and Automation 

After building and testing each component of our system 
individually, we ran three trials of the integrated system. Real-
time updates to the robot state and position were visible 
throughout the experiment, but not human intervention occurred 
during the experiment and results were only analyzed following 
the completion of the trials.  

3 RESULTS AND DISCUSSION 

We found that our integrated feedback system allowed genetically 
engineered cells to effectively control the motion of a robot in a 
predictable manner. As our cells were engineered to contain a 
genetic toggle switch, we expected that they would be able to 
automate the robot behavior to switch between two bistable states. 
We designed our experiment so that this bistability could be 
demonstrated. Our results indicated that this was true, with 
sustained cellular expression of mCherry or GFP (but not both) 
driving the robot to move in a predictable and consistent manner. 
We hope to expand this work by including more nuanced robot 
behaviors as well as more sophisticated regulatory gene networks 
to our cells.   

4 CONCLUSIONS 

We have demonstrated a novel system that allows synthetically 
engineered cells to control the motion of a simulated robot. Our 
system serves as a minimal “gut-brain axis” allowing a 
biomimetic “microbiome” to control the behavior of a “host” 
robot. We hope to use this system to explore how synthetically 
engineered cells may be used to automate mechatronic systems 
and to better understand the signaling dynamics between the 
microbiome and host organisms. We expect our findings will 
impact fields ranging from medicine to automation design for the 
life sciences.  
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1. INTRODUCTION 
Genetic logic circuits are becoming popular as an emerging field 
of technology. They are composed of genetic parts of DNA and 
work inside a living cell to perform a dedicated boolean function 
triggered by the presence or absence of certain proteins or other 
species.  
In this work, we introduce a top-down approach to synthesize 
genetic logic circuit. This approach is based on translating high-
level description of genetic circuit (in the form of boolean 
function) to its low-level representation in the form of SBOL [1] 
notation. This approach is implemented in the Genetic 
Technology mapping tool, GeneTech. It takes the Boolean 
expression of a genetic circuit as input, and then first optimize it. 
It then synthesizes the optimized Boolean expression into NOR-
NOT form in order to construct the circuit using the real 
NOR/NOT gates available in the genetic gates library [2]. In the 
end, GeneTech performs technology mapping to generate all the 
feasible circuits, with different genetic gates, to achieve the 
desired logical behavior. 

There are some existing tools which supports technology mapping 
of genetic circuits including Cello [2] and iBioSim [3]. GeneTech 
differs from these tools by generating all feasible genetic circuits 
from a Boolean expression. This work is originally inspired from 
the processes of optimization and technology mapping of 
electronic circuits in the electronic design automation (EDA) 
industry. In EDA, the combinatorial circuit optimization is always 
required to implement the circuit with the minimum number of 
logic gates [4]. This area-efficient implementation of digital 
circuits not only helps reducing the size of electronic devices but 
also avoid wasting power and redundant resources.   

 
Figure 1. Digital circuit of the expression ab+b+ac.  

(a) Original circuit. (b) Optimized circuit having two gates. 
In order to get the insight of logic optimization, consider the 
digital circuit for the Boolean expression, ab + b + ac, shown in 
Figure 1(a). In this figure, the circuit consists of four logic gates. 
After running the optimization algorithm, the number of gates in 
the circuit reduces down to two while preserving the original 
functionality, as illustrated in Figure 1(b). 
This optimization of digital electronic circuits seems simple and 
straight forward. However, the optimization and technology 
mapping of genetic circuits is not similar to electronic circuits. 
This is because the input and output quantities of electronic 
circuits are the same i.e. voltage, and therefore the electronic gates 
can easily be cascaded together. On the contrary, the input and 
output quantities of genetic gates are different, and therefore the 

signal matching has to be considered while mapping genetic gates 
on the circuit. This makes it very challenging to integrate genetic 
logic gates to construct complex genetic circuits.  Similar to the 
above process of optimizing digital logic in electronic circuits, we 
want to avoid having redundant logic in genetic circuits as well. 

2. METHODOLOGY 
Two different ways to represent the same boolean logic or digital 
circuit are the minterm and maxterm canonical forms. Minterms 
are also called the products because the variables (or literals) in 
the Boolean expressions are represented as the logical AND. 
Maxterms are referred to as sums because the variables (or 
literals) are represented as the logical OR. Therefore, the same 
Boolean function can either be expressed as the sum of 
products/minterms (SOP) or the product of sums/maxterms (POS), 
as shown in equation (1).  In this example, the left-hand side 
represents the SOP form and the right-hand side represents its 
equivalent POS form.  

ab + b + ac = a + b + c (a + b + c)(a + b + c) (1) 

 
Figure 2. The technology mapping flow of GeneTech.  

The flow of genetic technology mapping in GeneTech is shown in 
Figure 2. It takes the raw Boolean expression in the SOP form and 
then first optimize it using the simulated annealing (SA) [5] 
optimization algorithm. The goal of optimization at this step is to 
reduce the number of variables (or literals) in the expression while 
keeping the output logic the same. Reducing the number of literals 
in the Boolean expression results in the reduction of logic 
components required to obtain the desired logic.  

To construct real genetic circuits, GeneTech uses the gates library 
from [2], which consists of genetic gates in the form of NOR and 
NOT functions. Therefore, to map the genetic gates on the 
Boolean expression, it is necessary to bring it into NOR/NOT 
form. Hence, when the Boolean expression is optimized, it then 
goes to a process of synthesis, as shown in Figure 2. Once the 
Boolean expression is available in NOR/NOT form, a mapping 
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Figure 3. Experimental results of GeneTech for 0x0B [2]. (a) Circuit schematic and SBOL representation of 0x0B shown in [2]. (b) Circuit representation 

generated by GeneTech. (c) The SBOL notations of all possible circuits generated by GeneTech to achieve the same logic of the circuit 0x0B.

algorithm of GeneTech checks for the logic components in the 
gates library and find all feasible genetic circuits.    

We have extracted the genetic gates by analyzing the SBOL 
notations of all the circuits shown in [2] and organized them in 
separate lists of genetic NOT and NOR gates. The algorithm is 
based on a deterministic depth-first search approach and maps the 
genetic gates on the deepest most elements in the expression. For 
example, in the expression (() shown in Figure 2, all NOT gates 
from the library which are compatible with A are selected first. 
Then the mapping algorithm checks for any available NOR gate 
with one of the input as B and the other input matching to the 
outputs of any of the NOT gates selected previously for A. If any 
such NOR gate is found, the algorithm then search for another 
NOR gate with the inputs compatible to the output of first NOR 
gate and the output of any of the NOT gates available for C. In 
this way, all the compatible components are used to achieve the 
same boolean functionality with different possible genetic circuits.  

While constructing genetic circuits, GeneTech, avoid using those 
genetic gates which generate the same output protein. This is to 
make sure that the signals of the gates do not interfere with each 
other.  

3. EXPERIMENTATION AND RESULTS 
We performed experiments on the genetic circuits shown in [2]. 
Due to space limitation, the results of one circuit, 0x0B, are 
shown in Figure 3. Figure 3 (a) shows the schematic and SBOL 
representation of the circuit 0x0B obtained directly from [2].  

The input expression of the circuit 0x0B is obtained from the truth 
table given in [2], which is shown as expression (+) in Figure 2. 
After optimization, it is reduced to the expression (,) shown in 
Figure 2. Afterwards the synthesis is performed to bring this 
expression into NOR/NOT form shown as (() in Figure 2. Figure 
3(b) shows the multi-line text string format (similar to SBOL 
notation) which is used by GeneTech to represent the structure of 
a generated circuit. In Figure 3(b), promoters are shown with the 
symbol “->”, the proteins are represented by round braces “( )”, 
and the repression is indicated by the symbol “----|” or “T”. Figure 
3(b) indicates that the PTac promoter generates a protein PhlF 
which in turn represses the output promoter PPhlF. The promoter 
PPhlF together with the promoter PTet generate the protein HlYllR, 
which represses the output promoter PHlYllR. In the second line, 

promoter PBad generates the protein SrpR which supresses its 
corresponding output promoter PSrpR. This promoter PSrpR together 
with the promoter PHlYllR generate the protein BM3R1, which 
represses the activity of the output promoter PBM3R1. The promoter 
PBM3R1 is used to produce the output indicator, the yellow 
fluorescent protein (YFP). The SBOL notation of Figure 3(b) is 
shown as notation 1 in Figure 3(c). Figure 3(c) shows the SBOL 
representations of the circuits generated by GeneTech tool. This 
figure shows that the GeneTech tool, beside suggesting the 
solution given in [2] (Figure 3(c)-1), it also finds all other possible 
circuits to achieve the same logic function using other genetic 
components available in the gates library [2].  

4. SUMMARY 
In Cello [2], circuits are constructed by selecting the appropriate 
genetic components, based on matching their threshold levels, 
through non-deterministic search using simulated annealing 
algorithm. Therefore, for every compilation of the same code in 
Cello, the generated circuit may contain the same or different 
genetic components. On the contrary, GeneTech gives the number 
of possible solutions to achieve the same logic. With the correct 
set of parameters, the threshold levels of these circuits can then be 
obtained using D-VASim [6] and then can be verified in the 
laboratory. More design constraints can be added in GeneTech to 
make sure that the circuits generated by this tool would work in 
the laboratory. Furthermore, GeneTech, at its current state, 
supports technology mapping of genetic gates based on 
repression. In future, it will be upgraded to support genetic gates 
based on other technologies.  
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ABSTRACT
The optimization of heterologous metabolic pathways poses a com-
binatorial challenge as pathway size increases that hinders forward
engineering e�orts. To overcome these challenges, we developed
an automated algorithm that uses a small number of character-
ized pathway variants to identify the expression-productivity re-
lationship of a many-enzyme pathway, called a Pathway Map, by
combining elementary mode analysis, kinetic metabolic modeling,
model reduction, de-dimensionalization, and genetic algorithm op-
timization. We con�rm the algorithm makes accurate prediction of
optimal enzyme expression levels for pathways of varying size and
complexity using in silico pathway examples, and have success-
fully optimized multiple heterologous pathways in E. coli with this
method, the most recent being the NADPH regenerating Entner-
Doudoro� pathway of Z. mobilis. The algorithm is agnostic to the
genetic parts used to vary expression and the host organism of the
pathway, broadening its pathway optimization applications.
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1 INTRODUCTION
Heterologous metabolic pathways enable organisms to manufac-
ture a wide variety of chemical products, but to achieve economic
viability in a scaled-up process, the pathway being heterologously
expressed must be tuned to maximize productivity and titer. To this
end, heterologous metabolic pathway optimization is currently car-
ried out by constructing and characterizing many pathway variants,
incorporating di�erent regulatory genetic parts such as promoters
[1], ribosome binding sites (RBS) [5] and origins of replication to
vary the enzymes'expression levels [3].

IWBDA’17, August 2017, Pittsburgh, PA USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, these design approaches present a di�cult challenge,
particularly when optimizing many-enzyme heterologous path-
ways, such as natural product pathways. Synergistic e�ects be-
tween enzymes makes the collective tuning of enzyme expression a
requirement for an optimal pathway. Larger pathways pose a high-
dimensional combinatorial problem that library-based approaches
cannot adequately address, since the number of experimental mea-
surements needed to inform pathway design decisions is too vast
for the throughput of conventional characterization methods. Char-
acterizing a tiny fraction of these pathways will yield a low chance
of �nding the pathway's optimal enzyme expression levels, unless
a design approach that can use sparse, high throughput characteri-
zation data is used (Figure 1A).

Here, we describe an algorithm, the Pathway Map Calculator,
which learns the non-linear relationship between a pathway's en-
zyme expression levels and its end-product productivities. Using
this relationship, called a Pathway Map, we predict the relative
enzyme expression levels that maximize the pathway's end-product
productivity. The Pathway Map enables e�cient optimization of
the pathway's enzyme expression levels, provides insights into the
pathway's rate-limiting steps, and facilitates prioritization of pro-
tein engineering e�orts to improve the slowest enzymes'kinetics
(Figure 1B).

2 THEORY AND CALCULATIONS
2.1 Required Inputs
The algorithm requires two types of inputs: �rst, an experimental
data-set consisting of end-product measurements and relative en-
zyme expression levels for each characterized pathway variant; and
second, a candidate network that lists the enzymes'reactions and the
corresponding metabolite stoichiometries (Figure 1B). Inputted
end-product measurements may be assayed using any proportional
measurement, such as LC-MS, GC-MS, enzyme-linked assays, or
�uorescent biosensors. Inputted relative enzyme expression levels
may be derived from either measurements or model predictions of
the genetic parts'activities.

2.2 Model Generation and Parameterization
The algorithm automatically generates a system of de-dimensionalized,
reduced di�erential equations that quantify the relationship be-
tween the metabolic network s enzyme expression levels and its
metabolic �uxes. We use elementary mode analysis [8] to enumer-
ate the candidate reaction network's elementary �ux modes, and to
convert all known metabolic �uxes into model constraints.
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Figure 1: Overview of the Pathway Map Calculator. A) The design pipeline using the Pathway Map Calculator. After initially
characterizing the enzyme-productivity relationship of a pathway with a small, coarse, non-optimal pathway variant library,
the algorithm enables rapid prediction of that pathway's behavior with di�erent enzyme expression levels, informing fur-
ther design-build-test rounds B) Overview of the Pathway Map Calculator’s operation. Accepting two inputs, the algorithm
processes that data into 3 outputs: Pathway Maps, �ux control coe�cient maps, and rankings for protein engineering

We next generate the kinetic metabolic model, formulated as a
system of ordinary di�erential equations, to quantify the rates of
all reactions in terms of their metabolite and enzyme concentra-
tions. Each enzyme-catalyzed reaction is broken down into a set of
reversible �rst-order and second-order reactions according to the
enzyme's reaction mechanism. We then apply dedimensionaliza-
tion and model reduction, inspired by ensemble modeling [6, 7], to
reduce the degrees of freedom required to parameterize the kinetic
model and apply bounds to the model parameters.

We parameterize the kinetic model using a genetic algorithm to
assign kinetic parameter values, and �t the resulting predictions
to the provided pathway variant data, resulting in a predictive,
mechanistic model of the pathway's behavior.

3 RESULTS
3.1 Outputs
The Pathway Map Calculator produces Pathway Maps, smooth,
di�erentiable relationships linking the expression of a pathway's
enzymes to its end-product productivities. All predictions are quan-
titative, experimentally actionable, and re-usable for a variety of
applications. Additionally, the algorithm can provide mechanistic
insights into a pathway's rate-limiting step via the calculation of
�ux control coe�cients for each enzyme in the pathway [2], as well
as prioritization of protein engineering e�orts via estimations of
each enzyme's Michaelis-Menten kinetics.

3.2 Applications
We have validated the algorithm with many in-silico examples, �nd-
ing that the Pathway Map Calculator can predict optimal pathway

variants for a large pathway using a small library of pathway vari-
ants. We have applied the algorithm to several pathways to optimize
their productivities, including our most recent e�ort, the Entner
Doudoro� pathway of Zymomonas mobilis [4] for regenerating
NADPH.

The algorithm’s web interface can be accessed online at:
https://salislab.net/software/PathwayMapCalculator
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1. INTRODUCTION
The use of microfluidic chips for applications in biology to

reduce the cost, time, and di�culty of automating experi-
ments, while promising, has proven to have barriers to entry.
In particular, the cost of the equipment required for man-
ufacturing techniques like soft lithography, the di�culty in
designing functional microfluidic chips, and the time associ-
ated with manufacturing them have made rapid production
for prototyping and iterative design di�cult. Our lab’s mi-
crofluidics design flow is capable of automating much of the
design process of microfluidic chips using the paradigm of
defining them as primitives placed on a layout grid and ex-
porting standard formats for use in fabrication [1]. 3DuF,
a design tool that allows the user to carry out the place-
ment and connection of primitives through a browser-based
GUI, simplifies the design process to specifying the prim-
itives through parameters and using a pointer to connect
them with channels. But this approach assumes that the
designer knows exactly what physical dimensions the prim-
itives need for the chip to perform adequately for experi-
ments, which may not be the case if su�cient literature or
a fluid dynamics expertise are not present. By communicat-
ing with DAFD, our lab’s currently in-development database
and model-fitting framework, 3DuF will be able to define
microfluidic primitives for placement on chip layouts not
only through physical dimensions, but also by specific per-
formance metrics desired of the primitives’ functions, which
will result in automatically generated dimensions for those
primitives. This will allow chip design through the simple
paradigm of using a GUI to place primitives and connect
them with channels, while also making a useful definition of
those primitives for the designer’s needs less reliant on their
fluid dynamics expertise.

2. 3DUF - MODULAR DESIGN AND STAN-
DARD I/O

3DuF allows design of microfluidic chip layers by selecting
from a predefined list of microfluidic primitives, called MINT
[3], specifying the physical dimensions that define the physi-
cal characteristics of those primitives, and placing them on a
web page canvas where they can be connected with channels
[2]. All of this is done with a point-and-click GUI, removing
the need to draw a chip entirely by hand or learn a program-
ming language to define the chip, publicly available online at
http://www.3duf.org. Additionally, 3DuF’s ability to read

Figure 1: The connected flow of how all of our lab’s mi-
crofluidic design, fabrication, and control components can
work together

chip layouts from a JSON standard defined in our lab and
render based on those, as well as to export chip designs in
standard formats including SVG, make its designs compat-
ible with a wide range of fabrication flows. In particular,
in the context of our lab’s other tools, 3DuF has been used
as a rendering engine for chips designed by our automated
place-and-route engine, Fluigi Core, as well as the visual
component of our chip control page in the end-to-end GUI
tool, Neptune. The SVG output from 3DuF has been used
both in this context and with 3DuF as the standalone design
tool to fabricate physical chips even with inexpensive meth-
ods like CNC milling in our fabrication flow, Makerfluidics
[4]. The flow of these components working together, as well
as the new component our parameter definition automation
component, DAFD, would enable, is shown in Figure 1.

3. SIMPLIFYING DESIGN WITH DAFD
Our lab’s developing tool for Design Automation for Fluid

Dynamics, or DAFD, will further enhance 3DuF once it is
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Figure 2: The process by which parameter definition for a droplet generator primitive and chip design take place. With DAFD
added (dashed red box), manual specification of parameters will become unnecessary and the correct parameters based on a
desired droplet size will automatically generated before the droplet generator primitive is used as part of a larger design.

incorporated by allowing definition of the parameters that
define a primitive, as in the case of the droplet genera-
tor in Figure 2, using desired performance metrics rather
than manual adjusting of the parameters. Figure 1 includes
DAFD to show how it fits into the context of design us-
ing 3DuF: when creating a parameter, such as the droplet
generator, 3DuF will query DAFD for parameters based on
the specified metric. DAFD will, through either database
lookup or, failing a stored result, model-based prediction,
return parameter values for the primitive in question that
should produce the desired physical behavior. 3DuF will
then populate the parameter fields for the primitive in ques-
tion with these values, and the designer is free to place it in
the chip design as desired. As Figure 2 indicates, through
3DuF’s design tools and output format, a chip can then
be designed and sent to a fabrication workflow for physical
manufacture.

In practice, the interface with DAFD will be fully opt-in:
upon selecting a primitive from the list of possible options
in 3DuF’s sidebar (buttons shown in Figure 2), the user will
be able to choose definition by either standard manual ad-
justment of physical dimensions with sliders or a supported
metric, such as droplet size for a droplet generator. In the
latter case, the parameter values will be automatically pop-
ulated as dictated by DAFD, resulting in the addition of the
red dashed box in Figure 2 into 3DuF’s operation.

4. CONCLUSION AND FUTURE WORK
While the specific metric of droplet size for a droplet gen-

erator is the only example showcased here, the principle of
this design approach is applicable to performance metrics
for a range of the primitives in our lab’s MINT library, and
3DuF will be be able to apply this to others, such as the
serpentine micro-mixer and droplet merging structures. By
hooking into the database and model-based prediction tools
of DAFD, this approach will allow 3DuF to enable design of
microfluidic chips with relative ease for researchers.
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ABSTRACT 
Synthetic biology often employs evolutionary and combinatorial 
approaches to generate large libraries of genetic variants. In a 
basic example of a variant library, the biological function of a 
single genetic component is varied by introducing point 
mutations. Ultimately, however, synthetic biologists are more 
concerned with generating combinatorial variants at the system 
level[1].  Such libraries may include different genetic components 
arranged in permutative configurations[2], especially order and 
orientation permutations. In more advanced cases, variants may 
even encode semantically different networks[3], such as different 
logic gates.  

Here we demonstrate use of a phylosemantic tree to 
systematically map and explore genetic design space.  The tree  
classifies combinatorial promoters into families which exhibit 
similar patterns of gene expression, revealing design patterns. 
Phylosemantics is a combination of phylogenetics and semantic 
alignments. Semantic alignments are not a new idea[4], [5], but to 
our knowledge, this is the first application of semantic alignments 
to engineered genetic systems, or, more specifically, genetic 
architectures in the context of synthetic biology. Applications 
may include rationally guided DNA assembly or comparative 
analysis of genetic architectures. We believe phylosemantics 
could be a useful abstraction technique for the biodesign 
community and might help synthetic biologists understand how a 
variety of related designs are related to each other.  We are 
seeking industry or academic collaborators who are interested in 
applying phylosemantic approaches to a case study and who 
might be willing to share annotated sequence data.  

1. RESULTS & DISCUSSION 
The Cox combinatorial promoter library[2] is based on an abstract 
design composed  of three operators arranged sequentially in 
distal, medial, and proximal positions (Fig. 1). The boundary 
between positions are defined by the -35 and -10 sigma70 RNA 
polymerase binding sites. Promoter variants were derived by 
varying operator types at each position (repressor, neutral, or 
activator) while also testing different sequence variants for a 
given type.  For example repressor operators include variants of 
LacI or TetR operators, while activator variants include LuxR or 
AraC.  

 
Fig 1. The Cox combinatorial promoter library 

 
Fig 2. Phylosemantic tree of combinatorial promoters 

Of 288 promoters, we selected 12 and mapped them with a 
phylosemantic tree (Fig 2).  The length of branches of the tree 
correspond to semantic distance between variant designs.  
Tabulated next to each variant design are the basal levels of gene 
expression measured for each variant promoter. The advantage of 
graphing these data with a phylosemantic tree is that some design 
patterns become more apparent. 

The first four variants are all related because they each have a 
repressor operator distally.  Despite the presence of a repressor 
operator, these promoters exhibit high expression anyway. 
Repression in this family of promoters appears to fail. Thus, a 
design rule which may be inferred is that repressor operators in 
distal position are ineffective. 

The middle cluster contains similar promoters with a medial 
repressor operator.  Promoters with a medial repressor operator 
exhibit very low gene expression consistent with repression. This 
makes sense from a biophysical perspective—a repressor bound in 
medial position will sterically hinder RNA polymerase binding. A 
design rule may thus be stated that repressor operators in medial 
position exhibit a pronounced “off” effect. 

The lower cluster is largely characterized by activators in the 
proximal position. This cluster is interesting because it suggests 
that proximal activator operators exhibit high basal expression 
when uninduced.  The high expression levels coming from 
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proximal L activation operators suggest leaky expression. 
Consequently, it is likely that this activator does not have much 
dynamic range. In order to assess the full range of activation, we 
would need to graph induced conditions versus the uninduced 
conditions currently shown. Activation operators in proximal 
position may have a poor range of response and be energetically 
costly due to leaky expression.  

These design rules are not new observations, and were originally 
described by Cox et al.  Thus the design rules we inferred from 
the phylosemantic tree are aligned with the results of their 
previous study. The purpose of this exercise was to cross-validate 
the phylosemantic approach on the Cox library because the 
general design rules are already known. Some of these design 
rules can clearly be seen when presented in the context of the 
phylosemantic tree in Fig. 2. For brevity and clarity, our 
phylosemantic analysis only includes 12 of 288 promoters. 
Analysis of the full promoter library might reveal other interesting 
patterns. 

2. METHODS 
Phylosemantics, as we define it here, extends conventional 
phylogenetic approaches with the use of abstract genetic 
encodings and semantic weights. Phylogenetics is a well-
established method for classifying gene variants into evolutionary 
families based on similarity in primary sequence structure. The 
typical workflow begins with multiple sequence alignment (MSA) 
of variant sequences. From the MSA, a pairwise distance matrix is 
obtained.  In phylosemantics, this distance matrix is augmented 
with semantic weights which may be derived from an ontology, 
such as the Sequence Ontology[6], or a simple, custom ontology 
defined by the user.  A phylosemantic tree is derived from the 
semantically-weighted distance matrix. 

Phylosemantics requires genetic data that is annotated with terms 
from which a semantic score may be calculated. For this reason, 
standardized annotations based on ontologies are especially 
useful. Annotations may be computationally predicted, or created 
by biologists using annotation tools like sequence editors. The 
utility of phylosemantics will always be tied to the richness of 
annotated sequence data which is available. For this reason, we 
have leveraged the data standard called Synthetic Biology Open 
Language[7], [8] (SBOL) which supports rich annotations and 
easy exchange of genetic data.  

For this study we used several open-source software libraries. For 
semantic representation of combinatorial promoters we used the 
C++ library LibSBOL 2.1.1[9].  For sequence alignment of 
abstract sequence encodings we used the C++ library Seqan 
2.2.0[10].  For visualization of trees we used the Python 
phylogenomics module ETE Toolkit[11]. 

3. FUTURE WORK 
So far we have only applied this approach to genetic designs 
consisting of biological parts arranged in primary sequence.  In 
the future, more sophisticated semantic alignments could be 
performed, for example on hierarchical genetic structures or the 
networks they encode. These advanced approaches might become 
valuable as biological designs become ever more complex and the 
availability of standardized, well-annotated genetic data improves. 
Phylosemantics encompasses a number of related approaches that 
might apply in different scenarios. For example, different 
formulae for calculating semantic distance can produce trees that 
are more useful for one type of analysis versus another. Another 

choice with interesting implications is whether to construct a 
rooted versus unrooted tree. Other scenarios in which 
phylosemantics might be useful include: 

x Phylosemantic classification might be used to classify 
permutations of genes in different orientations.   

x Phylosemantics could enable biodesign automation 
efforts by helping synthetic biologists plan rational 
assembly strategies given a collection of DNA 
templates. 

x Phylosemantic classification might also be useful for 
biologists more interested in studying natural systems 
than building synthetic systems.  For example, a 
comparative study of the architecture of variant 
proteasome systems might be helped by a more 
systematic approach[12].   

We are seeking industry or academic collaborators who are 
interested in applying phylosemantic approaches to a case study 
and who might be willing to share annotated sequence data. 
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1. INTRODUCTION
As synthetic biology increases in scope from genetic parts

and devices to genomes and libraries [5], it becomes chal-
lenging to infer or specify common design patterns using
descriptions of individual design variants. Given a collec-
tion of GenBank files or a spreadsheet specifying the design
of thousands of constructs, it is a non-trivial task to ana-
lyze these constructs and determine the rules that govern
their shared design. Even when informal verbal or written
descriptions of these rules are provided, important details or
edge cases can easily be omitted. This issue is compounded
by the fact that formal mechanisms for tracking changes to
design rules are often not in place, leading to information
loss over the course of a project.

We have sought to address these issues by developing a
platform (Knox) for manipulating rule-based genetic design
spaces. Unlike previous approaches to rule-based genetic
design [2, 3], Knox enables rapid sharing and discovery of
design rules by providing operators for merging and inter-
secting design spaces. These operations are possible because
Knox encodes design spaces as labeled directed graphs. We
briefly describe this existing graph-based formalism for com-
binatorial genetic design [1] and discuss its application via
Knox to biosynthetic gene clusters designed by our collabo-
rators. These gene clusters can access many di↵erent small
molecule products based on their inclusion/exclusion of en-
zymes belonging to di↵erent enzymatic classes.

2. DESIGN SPACE GRAPHS
Labeled graphs can be used to abstract entire design spaces

for comparison and rule sharing. In Knox, each design space
graph consists of a set of nodes and a set of directed edges
between these nodes. The edges are labeled with sets of
one or more DNA parts, which are depicted in Figure 2 and
Figure 3 using symbols taken from the SBOL Visual stan-
dard [4]. Each path from a start node (empty green circle) to
a stop node (empty red circle) then represents a linear con-
catenation of one DNA part from each edge into a genetic
design. Each of these designs is “correct by construction,”
which means that they adhere to the rules encoded by the
structure of the graph.

In this way, design space graphs can compactly store large
numbers of genetic design variants. In addition, the design
rules encoded by the structure of these graphs can be manip-
ulated via straightforward graph operations. Knox provides
a variety of operators for connecting and combining graphs,
including those shown in Figure 1 and discussed in the case
study of Section 3.

Figure 1: Subset of available operators for connect-
ing and combining design space graphs in Knox.

3. CASE STUDY
We have applied Knox to track and manipulate genetic

design spaces for gene clusters designed by our collabora-
tors for combinatorial biosynthesis. This case study focuses
on the application of Knox to a design space (Design Space
A) that mixes-and-matches 16 enzymes in 6 di↵erent enzy-
matic classes (Figure 2), and another design space (Design
Space B) that mixes-and-matches 48 enzymes in 11 di↵er-
ent enzymatic classes (Figure 3). When visually appraising
the design space graphs shown in Figure 2 and Figure 3,
it is immediately apparent that only Design Space B fea-
tures polycistronic genes, and that there is more specific
pairing of ribosome binding sites (RBSs) with coding se-
quences (CDSs) in this design space. Less apparent is the
fact that these design spaces share only 8 parts between
them, but this can quickly be determined by applying the
AND operator, which intersects the design spaces and pro-
duces a significantly smaller space, as reported in Table 1.
Further analysis of the intersection space reveals that most
of the shared parts are ribozymes, and only three shared
parts form a longer motif: a ribozyme followed by an RBS
and a CDS.

Table 1 also reports the results of applying the Join, OR,
and Merge operators to Design Space A (40 nodes and 49
edges) and Design Space B (95 nodes and 139 edges). Unlike
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Figure 2: Graph for Design Space A encoding
1, 512 gene cluster designs capable of combinatorial
biosynthesis. Each design adheres to rules implicitly
encoded by the structure of the graph. These rules
dictate part ordering and the inclusion/exclusion of
di↵erent enzymatic classes, leading to the biosyn-
thesis of di↵erent small molecule products.

Table 1: Applying Operators to Spaces A & B

Operator Time (s) Nodes Edges Designs

Join 1.50 134 188 3.5 ⇤ 1013
OR 1.71 133 188 2.3 ⇤ 1010
AND 1.33 9 8 6
Merge 3.63 963 1361 > 3.5 ⇤ 1013

the AND operator, which can be used to compare and prune
design spaces, these operators are primarily used to expand
design spaces, either connecting them in series (Join), con-
necting them in parallel (OR), or combining them based on
their similarity (Merge). While the Merge operator can pro-
duce large design spaces that may contain malformed tran-
scriptional units, these nonsense designs can be eliminated
through subsequent applications of the AND operator. Im-
portantly, neither of these operations would be possible to
perform at scale without the aid of a machine.

4. CONCLUSION
Based on our initial testing of Knox with real-world test

cases, we have demonstrated that automating the process of
sharing design knowledge between projects in a rule-based
manner can greatly improve quality control for large-scale
genetic design. Not only does automation reduce the risk of
human error when applying design rules, it can also reveal
unexpected portions of a design space that might otherwise
be overlooked due to human bias. Knox has the capability
to be a platform for large-scale, rule-based genetic design.

Figure 3: Graph for Design Space B encoding
2.3 ⇤ 1010 gene cluster designs capable of combina-
torial biosynthesis. The first half of the graph is
mostly linear and specifies the ordering of manda-
tory enzymatic classes. The second half dictates the
inclusion/exclusion of optional enzymatic classes.
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ABSTRACT
Single and multi-cistronic operons are the central architectural unit
of all natural and engineered genetic systems in bacteria, includ-
ing multi-regulator genetic circuits and multi-enzyme pathways.
An operon’s sequence ultimately determines the expression levels
of its RNAs and proteins, though the sequence-to-function rules
that dictate optimal operon design remain to be elucidated or fully
tested. Currently, operons are designed by appending several pre-
existing promoters, ribosome binding sites, coding sequences, and
terminators. As a consequence, many engineered operons are full
of overlapping, context-dependent, and undesired genetic elements
that confound rational design and will inevitably break the operon’s
function. Building upon the Operon Calculator’s existing �fteen de-
sign rules, we present quantitative sequence-function relationships
controlling mRNA lifetimes in E. coli. Furthermore, we will show
how these systematic experiments yield design rules that enable
the Operon Calculator to achieve maximum tunable control over
operon design.
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1 INTRODUCTION
Rapid and cost e�ective operon construction relies on the ability to
avoid multiple design-build-test cycles by accurately modeling the
expression and behavior of each gene in the operon. We developed
the Operon Calculator as a multi-objective optimization tool to
automate implementation of multiple sequence design constraints.
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In particular, we have developed a sequence-to-function model of
mRNA turnover to predict mRNA half-life in E. coli. Substantial
previous work has identi�ed the primary enzymes responsible for
mRNA turnover, which are RNA endonucleases E and III. This work
has identi�ed RNAse E’s primary role in the degradosome machin-
ery and its preference for unstructured RNA. Likewise, RNAse III
targets long paired RNA structures [2, 3, 7]. RNA-seq using the
entire E. coli genome has opened new avenues to determine the
particular sites targeted by the RNAses[1, 5]. Our approach builds
on this body of information by using rational design to test partic-
ular mRNA structural motifs to quantitatively model RNA half-life.
Identifying and avoiding particular structural motifs that cause
degradation allows for more precise and reliable operon design.

2 EXPERIMENTAL RESULTS
Our experimental investigation into mRNA half-lives presents the
key �nding that a strong positive relationship between mRNA sta-
bility and translation rate exists. Using the RBS Library Calculator,
we engineered ribosome binding sites to created operons that use
the same promoter, �uorescent reporter, and terminator, but span
three orders of magnitude with regard to translation rate [4].

Figure 1: mRNA Stability as a Function of Translation Rate
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Using real-time qPCR we found that mRNA levels drop an order
of magnitude over this translation space. This result suggests that
higher ribosome density protects mRNA transcripts from attack
by RNAses as depicted in Figure 2. Bulky 70s ribosomes physically
occlude RNAse binding sites, preventing RNAses from binding and
cutting the mRNA transcript. This hypothesis will also be tested by
investigating variably structured protein coding regions. Additional
parameters such as the e�ect of the location of RNAse sites in the
operon, such as the 5’ UTR, protein coding region, intergenic region,
and 3’ UTR are all investigated. Furthermore, the required footprint
size of the RNAses is also quanti�ed.

Figure 2: Ribosome Protection of mRNA Transcripts

3 MODELING APPROACH
Using the experimental mRNA lifetime results, a Markov model
of mRNA transcript lifetime can be developed. Each state of the
system is de�ned as a particular segment of themRNA transcript, its
binding status to RNAses or ribosomes, and whether or not it is cut.
mRNA structures present on each particular segment of the mRNA
are calculated using Vienna RNAfold [6]. Based on the signi�cant
e�ect of translation on mRNA accessibility to degradation, existing
translational modeling is used to model the advancing ribosomes
from one state to the next. [8]. Using the experimental results of
the size of RNAse E and RNAse III sites, the probability of attack
by RNAse III and E can be calculated and used to determine the
overall lifetime of the mRNA transcript.

4 AVAILABILITY
The Operon Calculator is available on the Salis Lab website for
both complete operon design and for the prediction of previously
designed operons. Figure 3 shows the interface for the Operon Cal-
culator. The top check boxes control the di�erent design criteria
for the entire operon. The model of mRNA stability will be incor-
porated into the ’Improve mRNA Stability’ design rule function
shown. In the next �eld, the user can either input a promoter or
select a promoter from our database. In the following �elds, the pro-
tein coding sequences can be entered along with the desired target
translation rate. Additionally, the user can either input a terminator
or select one from our database. Lastly, the user selects the host

organism for the operon. The Operon Calculator is freely available
to academic users. The Operon Calculator design mode is available
at https://salislab.net/software/OperonCalculator_ForwardDesign
and the evaluate mode is available at https://salislab.net/software/
OperonCalculator_EvaluateAnnotatedOperon.

Figure 3: Operon Calculator Interface

5 CONCLUSION
Overall, the Operon Calculator provides a complete tool to design
robust operons for predictable gene expression. We have demon-
strated the importance of including quantitative mRNA degradation
data when modeling the expression of an operon.
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1 INTRODUCTION
�B��S�� [5] is a standard-enabled genetic design automation (GDA)
tool that promotes the model-based design of genetic circuits and
the sharing of these designs via community developed standards
and data repositories. A high-level illustration of the key features
of �B��S�� is shown in Figure 1. The �B��S�� design work�ow
leverages models and their analysis throughout to guide the design
choices made when constructing a genetic circuits. The remainder
of this abstract describes this work�ow in further detail.

2 DNA CIRCUIT DESIGN
A genetic circuit design in �B��S�� begins by using the SBOLD��
������ [21] tool to select genetic parts from the S��B��H�� part
repository (formally known as the SBOL S���� [7]). This DNA-
level design is expressed using version 2 of the Synthetic Biology
Open Language (SBOL) [2, 15]. SBOLD������� [21] is an intuitive
sequence editor tool that is incorporated into �B��S�� as a plugin.
The structural layer of genetic designs can be viewed and created
hierarchically in SBOLD�������’s canvas. S��B��H�� is a reposi-
tory for synthetic biology designs that allows storing and sharing
genetic designs represented in SBOL. This feature facilitates model-
based design of genetic circuits by providing the means to construct
new designs from existing well-de�ned parts.

Next, the V������ P���� model generator obtains interaction
data, as described in [8, 9], from S��B��H�� to add functional infor-
mation to the SBOL description. For example, it adds the proteins
that act as transcription factors for the promoters, as well as their cod-
ing sequences in the DNA-level design. These protein components are
coupled with the DNA components constructed by SBOLD�������
along with their interactions into functional module de�nitions.
Next, an SBOL to SBML converter [14] can be applied to translate
this SBOL into a quantitative model expressed in the Systems Biol-
ogy Markup Language (SBML) [3]. Since SBOL is used to represent
qualitative models, the quantitative information required by SBML
is inferred [14]. However, this SBML model can then be further
re�ned and model parameters added using �B��S��’s model editor.
Any changes made can be mapped back to SBOL using the SBML
to SBOL converter [10]. In this converter, many SBML elements
are lost (e.g. events, rules, function de�nitions, etc.) because they
do not have any purpose in SBOL. Note that these conversions are
lossy since SBOL and SBML are used for di�erent purposes. The
resulting complete genetic circuit can be uploaded to S��B��H��
to share and document the design.

3 ANALYSIS
�B��S�� supports simulation of SBML models using a variety of
di�erent simulation methods, such as ordinary di�erential equations
(ODEs) and stochastic simulation. In addition, Markovian analysis,
such as stochastic model checking [6], can be used to reason about
the robustness of the design. Lastly, the �B��S�� tool allows the
visualization of grid-based models of cellular populations [17].

�B��S�� is the �rst software tool that is capable of simulat-
ing SBML models that utilize the hierarchical model composition
(comp) [16] and arrays packages without �attening out these struc-
tures [19, 20]. Another feature of �B��S��’s simulation capabilities
is the ability to perform �ux balance analysis (FBA) on SBMLmodels
encoded using the �ux balance constraints (fbc) package [11]. FBA is
quite useful when kinetic information about the model is unknown.
In this case, reaction kinetics are replaced by �ux bounds. The goal
of FBA is to optimize an objective function (usually cell growth)
according to a set of reaction �ux constraints. One of the limita-
tions of FBA is that it cannot express kinetic dynamics, since the
species concentrations are not updated once the reaction �uxes are
obtained. In order to overcome this limitation, dynamic FBA (DFBA)
can be used. In DFBA, an FBA model is coupled to its counterpart
represented with chemical kinetics, where kinetic parameters are
obtained as a function of the �uxes. This allows the species in the
FBA model to be updated dynamically. DFBA is not inherently
supported in SBML, though using the comp package along with
the fbc package addresses this limitation. A consensus has been
reached, and a new scheme using these packages has been proposed
to encode such models. �B��S�� includes a new simulation method
that is able to simulate such models.

Since one of the goals of �B��S�� is to use standards for the
interoperability between tools, the Simulation Experiment Descrip-
tion Markup Language (SED-ML) [18] is integrated into �B��S�� to
describe how a model should be analyzed and how the results are
presented to the user. The SED-ML �le along with results of the
simulation can also be attached to designs stored in S��B��H��.

4 SYNTHESIS
While thework�ow described in Figure 1 requiresmanual selections
of parts for a genetic design, �B��S�� also supports automated
methods for part selection leveraging a process called technology
mapping [13]. Rather than deriving a model from a circuit, this
process begins by expressing the model in SBML, and a circuit is
constructed by selecting parts that implement the desired function.
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Figure 1: This is a high-level diagram of how the genetic circuit design work�ow is supported by �B��S��. First, genetic parts
encoded using SBOL are fetched from S��B��H��using the SBOLD������� plugin to construct theDNA-level design encoding
using SBOL. Next, the DNA design is augmented with interaction data using the V������ P���� model generator, and the
functional SBOL is converted into an SBML model. The resulting mathematical model can then be re�ned and parameters
con�gured using �B��S��’s model editor. The SBML model can be analyzed in �B��S�� as described by an associated SED-ML
document. The data created for SBOL parts, SBML model, and analysis can be shared and documented by uploading these
artifacts to S��B��H��.

The key challenge that has to be addressed is that the parts selected
must not interfere with each other. Namely, there should be no
unintended interactions between the proteins produced by each of
the parts of the design.

5 CONCLUSION
�B��S�� is a GDA tool for the modeling, analysis, and design of
genetic circuits that is being actively developed at the University of
Utah. While some older analysis methods [4] and model generation
methods [1] are written in C/C++, the majority of �B��S�� is writ-
ten in Java leveraging pure-Java libraries such as JSBML [12] and
libSBOLj [22]. �B��S�� is an open-source project available publicly
at: https://github.com/MyersResearchGroup/iBioSim.

ACKNOWLEDGMENTS
The authors would like to thank Nathan Barker, Scott Glass, Kevin
Jones, Hiroyuki Kuwahara, Nam Nguyen, Tyler Patterson, Jason
Stevens, and Zach Zundel for their contribution to the development
of earlier versions of �B��S��.

The authors of this work are supported by the National Science
Foundation under Grant No. CCF-1218095 and DBI-1356041. Any
opinions, �ndings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
re�ect the views of the National Science Foundation.

REFERENCES
[1] N. A. Barker et al. Learning genetic regulatory network connectivity from time

series data. IEEE/ACM transactions on computational biology and bioinformatics,
8(1):152–165, 2011.

[2] M. Galdzicki et al. The synthetic biology open language (SBOL) provides a
community standard for communicating designs in synthetic biology. Nature
biotechnology, 32(6):545–550, 2014.

[3] M. Hucka et al. The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics,
19(4):524–531, Mar. 2003.

[4] H. Kuwahara et al. Automated abstraction methodology for genetic regulatory
networks. In Transactions on computational systems biology VI, pages 150–175.
Springer, 2006.

[5] C. Madsen et al. Design and test of genetic circuits using iBiosim. IEEE Design
Test of Computers, 29(3):32–39, June 2012.

[6] C. Madsen et al. Stochastic model checking of genetic circuits. J. Emerg. Technol.
Comput. Syst., 11(3):23:1–23:21, Dec. 2014.

[7] C. Madsen et al. The SBOL Stack: A platform for storing, publishing, and sharing
synthetic biology designs. ACS Synthetic Biology, 5(6):487–497, 2016.

[8] G.Mısırlı et al. Bacillondex: An integrated data resource for systems and synthetic
biology. Journal of Integrative Bioinformatics (JIB), 10(2):103–116, 2013.

[9] G. Mısırlı et al. Data integration and mining for synthetic biology design. ACS
synthetic biology, 5(10):1086–1097, 2016.

[10] T. Nguyen et al. A converter from the Systems Biology Markup Language to the
Synthetic Biology Open Language. ACS Synthetic Biology, 5(6):479–486, 2016.

[11] B. G. Olivier and F. T. Bergmann. The systems biology markup language (sbml)
level 3 package: Flux balance constraints. Journal of Integrative Bioinformatics
(JIB), 12(2):660–690, 2015.

[12] N. Rodriguez et al. JSBML 1.0: providing a smorgasbord of options to encode
systems biology models. Bioinformatics, 31(20):3383, 2015.

[13] N. Roehner et al. Directed acyclic graph-based technology mapping of genetic
circuit models. ACS synthetic biology, 3(8):543–555, 2014.

[14] N. Roehner et al. Generating Systems Biology Markup Language Models from
the Synthetic Biology Open Language. ACS Synthetic Biology, 4(8):873–879, 2015.

[15] N. Roehner et al. Sharing structure and function in biological design with SBOL
2.0. ACS Synthetic Biology, 5(6):498–506, 2016.

[16] L. P. Smith et al. SBML level 3 package: Hierarchical model composition, version
1 release 3. Journal of Integrative Bioinformatics (JIB), 12(2):603–659, 2015.

[17] J. T. Stevens et al. Dynamic modeling of cellular populations within iBiosim.
ACS Synthetic Biology, 2(5):223–229, 2013.

[18] D. Waltemath et al. Reproducible computational biology experiments with SED-
ML-the Simulation Experiment Description Markup Language. BMC systems
biology, 5(1):198, 2011.

[19] L. Watanabe et al. E�cient analysis of Systems Biology Markup Language
Models of cellular populations using arrays. ACS synthetic biology, 5(8):835–841,
2016.

[20] L. H. Watanabe et al. Hierarchical stochastic simulation algorithm for SBML
models of genetic circuits. Frontiers in bioengineering and biotechnology, 2, 2014.

[21] M. Zhang et al. SBOLDesigner 2: An intuitive tool for structural genetic design.
ACS Synthetic Biology, 2017.

[22] Z. Zhang et al. libSBOLj 2.0: A Java library to support SBOL 2.0. IEEE Life Sciences
Letters, 1(4):34–37, Dec 2015.

2

41

https://github.com/MyersResearchGroup/iBioSim


Standard Enabled Model Generator for
Genetic Circuit Design
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1 INTRODUCTION
A substantial amount of information is being produced about biolog-
ical parts that can be used to implement complex designs. However,
this information is usually available for human interpretation and
o�en at the DNA sequence level. Computational modeling in silico
is o�en exercised manually in order to predict the behavior of de-
signs that can be implemented in vivo or in vitro. In these models,
functional relationships and design constraints between parts in a
design are captured in a formal modeling language for simulations.
Although this approach may be su�cient for small designs and part
libraries, automation of the model generation process is necessary
to evaluate larger combinatorial design spaces.

Data standards are particularly important to facilitate design au-
tomation, and to pass information between di�erent computational
tools when implementing complex work�ows. �e Synthetic Biol-
ogy Open Language (SBOL) [1, 3, 11] has emerged as an international
standard to exchange genetic circuit designs. �is standard is useful
to specify designs in terms of constituent components. �e order
and sequences of these components in a design can be captured,
and these designs can then be hierarchically used in more complex
designs. Critically, SBOL supports capturing molecular interactions
between these components. �is information is invaluable when
creating computational models. Deriving simulatable models, in
the form of the Systems Biology Markup Language (SBML) [4] docu-
ments, from such SBOL designs has already been demonstrated [10].
In this earlier approach, interactions are manually provided.

Building upon these promising e�orts, this paper presents a data
integration based approach, enabled by data standards, to facilitate
the automated creation of computational models from simple de�-
nitions of genetic circuits. �ese de�nitions may include minimum
information that is necessary for DNA synthesis. Computational
models are then constructed by extracting knowledge about these
DNA components and other interacting entities such as proteins,
small molecules, complexes, etc.

2 MODEL GENERATIONWORKFLOW
Our model generation work�ow is depicted in Figure 1. �is work-
�ow consists of three components. S��B��H�� (which now in-
corporates the SBOL S���� [6]), a data repository that stores in-
formation about genetic parts and their interactions, �B��S�� [5],
a so�ware for constructing and modeling genetic circuit designs,

Figure 1: �e work�ow described in this abstract is summa-
rized in this diagram. �e process begins by designing a sim-
ple genetic design in �B��S�� using the SBOLD������� plu-
gin. �e parts for this design are retrieved from S��B��H��.
�e generated design is submitted to the VPR, which adds
the interactions between the components to the original de-
sign. �e resulting functional design retrieved in SBOL is
translated into an SBML computational model, which can
now be simulated using �B��S��.

and the V������ P���� R��������� (VPR) [9], a methodology for
storing modular, composable models of parts, together with an
interface that allows their composition into larger models. Each
of these components is described in more detail in the following
sections.

2.1 Data Integration
While a substantial amount of biological information has been
produced, this data is o�en available in di�erent formats and the
meaning of data varies between di�erent databases. To make the
most of this data in synthetic biology, it is important that these het-
erogeneous datasets are integrated so that they can be used easily
both by humans and so�ware tools. SyBiOntKB [7] is an integrated
dataset for synthetic biology applications that has initially been
populated with an integrated Bacillus subtilis dataset [8]. SyBiOn-
tKB is represented in RDF and the semantics of entities are de�ned
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using the SyBiOnt ontology. SyBiOntKB is now hosted in a publicly
shared S��B��H�� instance (h�ps://synbiohub.org). SyBiOntKB
is then mined for genetic parts which are recorded back in S���
B��H�� in the form of SBOL objects. �e S��B��H�� database is
backed-by an RDF triplestore and allows uploading, downloading
SBOL documents and querying the underlying data using SPARQL.

2.2 Genetic Circuit Construction
In order to construct the DNA-level genetic circuit, our work�ow
uses the SBOLD������� [12] plug-in within �B��S��[5]. SBOLD��
������ can connect to S��B��H�� in order to query for parts by
their role, such as promoter, coding sequence, etc., and the user
can then select a desired part, and download its sequence and other
meta-data. �is process can be repeated until a complete, DNA
structural-level genetic design is produced.

2.3 Enriching SBOL Designs
�e next step of the work�ow uses the VPR to examine the DNA-
level information provided by SBOLD������� and enrich it with
further details using data found in the S��B��H�� repository. �is
work extends the VPR [9] API in providing functionality which
enriches SBOL objects with information about interactions of DNA
components with other biological molecules. �e resulting enriched
SBOL designs are returned from the VPR API now including addi-
tional design components for interacting proteins, small molecules,
and protein complexes. Interactions such as the translation of
proteins, the activation and inhibition of promoters, and complex
formation are also incorporated. �e following rules are applied
for this process:

• A single SBOL ModuleDefinition entity is created for a
given transcriptional unit design, which may be formed of
promoters, ribosome binding sites, coding sequences and
terminators. �is entity is used to encapsulate molecular
interactions between biological components.

• Biological molecules interacting with any of the DNA-
based components are added to the ModuleDefinition.

• First-level interactions of proteins produced by the tran-
scriptional unit are also included in the ModuleDefinition.

• If a biological molecule is not produced using all the entities
in the enriched SBOL design, then the corresponding SBOL
FunctionalComponent is marked as an input. Otherwise,
the corresponding FunctionalComponent is marked as
both input and output. �ese inputs and outputs are further
used when creating hierarchical designs.

In addition to the syntax provided by the SBOL standard, de�n-
ing the semantics has been an important aspect of the work�ow
presented here. For example, the VPR uses the Systems Biology
Ontology (SBO) [2] terms when providing types of interactions,
and roles of participants in each interaction, as described here [1].
�ese terms make the resulting SBOL documents further machine
tractable and facilitate deriving models.

2.4 Deriving Dynamic Models
Expressing a model in SBML is necessary to verify the behavior
of a design since SBOL, by design, does not include all of the in-
formation needed for dynamic simulation. To derive SBML from

SBOL, a conversion tool is applied [10]. �is tool uses ontology
terms to help translate components from one standard to another.
SBOL ComponentDefinitions are mapped to SBML Species and
SBOL Interactions are mapped to SBML Reactions. �e Module-
Definition that the Interaction(s) are nested in are mapped to
SBML ModelDefinitions. �e mapped reactions use default ki-
netic laws and reaction rates, speci�ed in [10]. Once the SBOL
data has been converted to SBML, the default kinetic laws and re-
action rates can be altered through the model editor provided in
�B��S��. In the future, these rates parameters may be stored as
annotations within the SBOL returned from the VPR. �e SBML
model constructed in this way can be simulated using a variety
of methods, including ordinary di�erential equations (ODEs) or
stochastic simulation methods.

3 CONCLUSIONS
�is standard enabled design work�ow is important to abstract
the details of complexity when dealing with computational models.
As demonstrated, simplifying the design process using a tool such
as SBOLD������� has signi�cant bene�ts. Designs can relatively
easily be created by users who can design circuits using DNA parts
and still bene�t from computational simulations. Moreover, this ap-
proach facilitates automation and exploring large designs spaces of
biological systems. �e standards SBOL and SBML are critical since
they serve as domain speci�c languages that seamlessly connect
all the tools within this work�ow.
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ABSTRACT
Gene expression models greatly accelerate the engineering
of genetic systems by predicting sequence-function relation-
ships and reducing trial-and-error experimentation. While
improved models are needed to engineer more complex sys-
tems, it has been a challenge to identify and characterize
new mechanisms controlling expression, motivating the de-
velopment of methods to systematically test model accura-
cies and identify sources of error. To address this challenge,
we developed an automated model test system that uses a
growing database of 16789 characterized genetic systems to
measure model accuracies, accept or reject mechanistic hy-
potheses, and identify areas for model improvement. Using
the model test system, we compared the accuracies of six
di↵erent models predicting bacterial translation initiation
rates, identified new sequence determinants controlling gene
expression, and rejected several hypothetical, long-suggested
mechanisms controlling translation initiation. Automated
model test systems will dramatically accelerate the devel-
opment of improved gene expression models, and thereby
transition synthetic biology into a mature engineering disci-
pline.

Categories and Subject Descriptors
I.2.2 [Computing Methodologies]: Automatic Program-
ming—Automatic analysis of algorithms; H1.1 [Information

Systems]: Systems and Information Theory—Information
theory ; G.3 [Mathematics of Computing]: Discrete Math-
ematics—Markov processes, Probabilistic algorithms (includ-
ing Monte Carlo); J.3 [Computer Applications]: Life and
Medical Sciences—Biology and genetics

Keywords
Automated model testing, sequence-expression database, bio-
physical models, information theory, hypothesis testing
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1. INTRODUCTION
It has been a grand challenge to transition synthetic biology
into a mature engineering discipline, where genetic systems
are reliably designed, built, and tested to reprogram cellular
behavior with desired outcomes. Quantitative models play a
central role in synthetic biology’s design-build-test cycle by
predicting the function of a candidate genetic system, before
it’s constructed, and therefore reduce trial-and-error exper-
imentation. For example, gene expression models can be
combined with system-level models of genetic circuits and
metabolic pathways to predict how changes in system ar-
chitecture, component expression levels, and host genome
control organismal decision-making and the biosynthesis of
desired chemicals. Overall, more accurate sequence-function
models are becoming essential to correctly build genetic sys-
tems with many parts.

In mature engineering disciplines, test systems are routinely
used to verify that models and software systems generate
predictions and outcomes within specified performance re-
quirements [1]. Model test systems are run whenever an ex-
isting model is modified or when new models are proposed
to ensure consistent improvements in accuracy across the
widest possible range of inputs. Model test systems also ac-
celerate the discovery of new interactions by identifying the
factors that contribute to model error. Within the life sci-
ences, the CASP [4], DREAM [5], and IMPROVER [3] com-
petitions have served a somewhat analogous purpose, where
researchers are challenged to apply computational modeling
to solve complex problems, for example, predicting protein
structure from sequence, identifying disease genetic traits,
and reverse-engineering gene regulatory networks. A key
theme of these test systems is that truly novel mechanisms
are far more discoverable once state-of-the-art models are
challenged to predict the outcome of a large and diverse ex-
perimental data-set.

2. WORKFLOW
Here, we present test-sfm, the first model test system for
gene expression models, capable of evaluating quantitative
model predictions on a compiled database of 16789 charac-
terized genetic systems with highly diverse DNA sequences
and measured functions (Figure 1). The model test system
facilitates uploading and managing experimental data using
pandas dataframes. It includes a smart model-wrapping in-
terface that pulls required values to pass as arguments to
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class Compare_Models(dict):
 def __init__(self,...):
 def run(...):
 def calculate_stats(...):
 def find_outliers(...):
if __name__ == “__main__”:
 handle = open(’mRNA_database.p’, ‘rb’)
 db = pickle.load(handle)
 testsystem = Compare_Models(db)
 testsystem.run()

Figure 1: The inputs and outputs of the model test

system. The model test system systematically eval-

uates the predictions of proposed models to accept

or reject specific hypotheses and identify sources of

model error.

the Python wrapped models. Output provided by test-sfm

includes correlation statistics, information theory metrics,
model error statistics, and ROC-curve analysis in the case
that models are binary classifiers.

2.1 Automated Model Testing
Using the automated model test system, we evaluated the
accuracies and sources of error for six di↵erent models of
bacterial translation initiation rate (RBS Calculator v1.0
[6], v1.1, v2.0, UTR Designer, RBS Designer, EMOPEC) on
the genetic system database. 856 genetic systems were char-
acterized individually, using flow cytometry or spectropho-
tometry to measure reporter expression levels (856IC), and
the remaining 15933 sequences were characterized using a
new technique, called Flow-seq, that uses flow-assisted cell
sorting (FACS), bar-coding, and next-generation sequenc-
ing (RNA-seq/DNA-seq) to characterize transcription and
translation rates (15933FS)[2]. The model test system re-
vealed clear di↵erences in model accuracies, and provides a
definitive comparison of these models these unified datasets
(Table 1).

Table 1: Model Comparisons on the 856IC subset

Model R2 D
KL

MC (bits) AUROC
RBS Calculator v1 0.51 0.22 1961.5 0.76
RBS Calculator v2 0.73 0.33 2744.2 0.94
UTR Designer 0.47 0.23 2035.0 0.75
RBS Designer 0.28 0.14 1368.0 0.59
EMOPEC 0.29 0.19 1315.3 0.76

2.2 Model Capacity (Information Theory)
We found several examples where specific models evaluated
on one sub-group of data could have substantially di↵er-
ent apparent accuracies than when evaluated on the entire
data-set. By treating the model test system as a commu-
nication process, governed by the principles of information
theory, we derived a new accuracy metric that quantifies
the amount of information encoded within a model, the
model capacity (MC), considering the diversity of sequences
(the Shanon sequence entropy, H

seq

), the number of distinct
experimentally-observable outcomes (N

bins

, and the model’s
error distribution (H

model

)(Equation 1). This newly pro-
posed MC metric provides an objective way to assess both
the model and experimental data-set together, facilitating

correct cross-dataset comparisons.

MC = H
seq

(N
bins

� 1)(1� H
model

H
random

) (1)

2.3 Hypothesis Testing
We adapted the model test system to test existing mecha-
nistic hypotheses, and to search for predicted physical prop-
erties of a genetic system (e.g. RNA structure, sequence
motifs, folding dynamics) associated with increased model
error. Hypotheses can be implemented as extensions to ex-
isting models and can be rapidly prototyped using test-sfm.
Types of hypothesis that can be explored include model-
implementation hypotheses, species-specific hypotheses, mech-
anistic hypotheses, and more.

3. DISCUSSION
The genetic systems in the database consist of non-regulated
genes, which can be used to test other sequence-to-function
models of gene expression, such as models of translation
elongation, translational coupling, and mRNA degradation.
However, as the database grows and the complexity of the
genetic systems increases, the model test system can be
used to test other relevant models that predict the function
of other sequence-encoded parts or systems. For example,
models that predict the function of individual parts, such as
the strengths of terminators, switching of riboswitches, or
cleavage rates of ribozymes could be tested on corresponding
data. System level models, such as those that predict genetic
circuit function, could be tested with the same approach on
databases of characterized circuits. As these sequence-to-
function models continue to improve, so does our capacity
to build functional and robust genetic systems.

The model test system is implemented in Python and is
available at https://github.com/reisalex/test-sfm.
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1 INTRODUCTION
Data standards are integral for interoperability between software
applications, since they provide guidelines for how data can be
meaningfully exchanged and in a uniform manner. Standards pro-
vide a bridge for applications to share and translate data; however,
they do not guarantee that applications are compatible to perform
a data exchange or that any translated data is legal and valid. This
paper proposes a methodology that validates applications and their
compliance to the data standard. Although this paper describes
the application of this methodology to a particular standard, the
Synthetic Biology Open Language (SBOL) [2, 4, 5, 8], it should be
applicable compliance testing for other data standards as well.

SBOL is an emerging standard that provides a format for de-
scribing the structural and functional information about a genetic
design. The structural description includes the chemical makeup,
i.e. sequence data, whereas the functional expresses the behavior
and interactions of a design. The SBOL data standard is paired with
the SBOL Visual standard [4] which provides a set of symbols that
are used to visually describe genetic designs.

Recently, we conducted a survey of synthetic biology software
developers to determine the level to which their applications sup-
port SBOL. A list of software that support SBOL is shown in Table 1
(more details in [6]). As the information from the survey is self-
reported by the application’s developer, a methodology is required
to actually test software compliance. There are three di�erent ele-
ments for testing: support of SBOL Visual, an application’s ability
to import SBOL data, and an applications ability to export SBOL
data. SBOL Visual must be manually inspected to ensure the cor-
rect usage of symbols. Additionally, to verify an application can
export SBOL data, the SBOL Validator tool can check the validity of
the SBOL �les produced [8]. Verifying that SBOL data is correctly
imported requires a round-trip test. A round-trip test consists of
importing SBOL data into an application and then exporting the
imported data. A comparison is performed of the imported and
exported data to ensure that no semantically important data has
been transformed or lost. If the comparison produces no semantic
di�erences, then the application can correctly import SBOL data.
While this test strategy could be excruciatingly tedious if the com-
parison is performed manually, the ideal scenario is to instrument
the software through an interface that enables the tool to import
and export SBOL data programmatically, them perform the com-
parison. The remainder of this paper describes an SBOL test suite,
and a methodology for compliance testing using this test suite.

Table 1: A partial list of software supporting SBOL. An
up-to-date list is maintained on http://sbolstandard.org.
The function column indicates if the tool is a (R)epository,
(S)equence design tool, (G)enetic circuit design tool,
(M)odeling and simulation tool, or a (V)isualization tool.
The SBOL column indicates if it supports SBOL (V), as well
as import and/or export of SBOL (1) or (2).

SBOL
Function Import Export

Name R S V G M V 1 2 1 2
BOOST • • • • •
Cello • • • •
DeviceEditor • • • • • •
DNAPlotLib • • • • • •
Eugene • • • • •
Finch • • • • • •
GenoCAD • • • • • •
GeneGenie • •
Graphviz • •
ICE • • • • • •
iBioSim • • • • • • • •
j5 • • • • •
MoSeC • • •
Pigeon • •
Pinecone • • • • •
Pool Designer • • •
Proto BioCompiler • • • • •
SBOLDesigner • • • • • • • •
SBOLme • •
ShortBol • • •
SynBioHub • • • • • •
Tellurium • • • • •
TeselaGen • • • •
TinkerCell • • • • • •
VisBOL • • •
VirtualParts • • • • • • •

2 SBOL COMPLIANCE TEST SUITE
To test a software tool’s compliance to the SBOL data standard, a
series of existing SBOL �les are utilized including published SBOL
1 �les that have been converted to SBOL 2 [1, 2], simple examples
from the SBOL speci�cation [3], and other miscellaneous �les cre-
ated to test the SBOL Java library [7]. This section brie�y describes
an analysis of this test suite (more details in [6]). In particular, it
organizes this test suite to determine its coverage of the SBOL data
model. The algorithm for analyzing the test suite begins by reading
in each example �le into an SBOLDocument libSBOLj. The data
types within each example are identi�ed and a count is associated
for each data type. The purpose of this is to understand the extent of
the SBOL data model utilized within each example. The algorithm
then organizes the examples within groups of clusters based on the
same type of data contained. The clusters contain a set of SBOL
data types common to a set of examples. Relationships are then
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created between the clusters by choosing a cluster and marking it
as a parent. Then, this cluster is compared to the remaining clusters
and a direct relation exists if the parent cluster contains a superset
of the data types contained by the compared cluster, and no other
cluster exists that also has a superset of the data types and a subset
of those in the parent cluster. The resulting relationship forms a
partially order set (POSET) representation the test suite clusters.

A graphical representation of the resulting POSET for the ex-
ample test suite is shown in Figure 1. The diamond source nodes
within the graph represent a superset of the data types common to a
group of examples. Each source node denotes a set of examples with
unique superset of the data types. In other words, no other node
exists that includes the same data types and more. The remaining
portion of the graph consists of paths made up of nodes that follow
parent-child relationships. Pathways exist as a child node stems
from one or more parent nodes and each child node consists of
examples that contain a subset of the SBOL data types contained by
its immediate parent. These pathways are signi�cant because they
provide a test strategy to narrow down which data types are being
correctly supported. The yellow colored nodes represent clusters
that include only structural data types (Sequences, Component-
De�nitions, etc.) while the green colored nodes represent clusters
that also include functional data types (Models, ModuleDe�ni-
tions, etc.). For example, source Node 6 contains one example with
�fteen data types represented in the example and there exists no
example representing these data types and more. Node 11 stems
from 6 with three examples representing nine types and are also
a subset of the types found in the previous node. Node 25 which
contains one example with two data types that are also within node
11 and so on.

In the SBOL data model, there are nineteen classes excluding
abstract classes. Given this, the maximum number of data types
that exists in a set of examples is �fteen types as represented by
Node 6. Furthermore, there does not exist any example with every
data type represented. While there does not exist an all-inclusive
example, every single data type is at least represented once within
an example. One last key insight is the imbalance in the types of data
existing within the examples. Sixty-nine percent of the examples
represent only structural data classes, while only thirty-one percent
of the examples include functional data type.

3 DISCUSSION
In creating amethodology for analyzing SBOL software applications
and their support of the SBOL Standard, an algorithm is created to
analyze an SBOL test suite. The inspection of the examples results
in a graph that can be used to test SBOL applications and verify the
self-reported data from the survey. In particular, one test case can
be selected from each source node and used to test the application,
if an example fails, then one test case would be drawn from all child
clusters. This process would repeat until the sink node is reached or
no further failures are discovered. By analyzing the point at which
examples succeed, we can accurately determine the data classes that
the software supports. In the future, we plan to expand the example
test suite to �ll some gaps in the testing landscape, and apply these
examples to test SBOL software compliance. In extension, we plan
to develop an SBOL test-runner that automates testing of import

Figure 1: A graphical representation of SBOL test suite
and their relations based on the data types supported. The
nodes are clusters of examples with the same SBOL data
types that are numbered arbitrarily for easy referencing.
The numbers within the parentheses are the number of
examples in the cluster. Diamond nodes are source nodes
with unique supersets of data types. Nodes colored yellow
indicate clusters that only include structural SBOL data
types. Green nodes represent clusters that also include func-
tional SBOL data types. All of the examples analyzed are
available at https://github.com/SynBioDex/SBOLTestSuite
/tree/master/valid/SBOL2.0

and export of SBOL data through applications using the testing
strategies previously discussed.
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1. MOTIVATION
Establishing an e↵ective engineering discipline always re-

quires standardized and comparable units of measurement.

Such measurements serve as a means of communication be-

tween the people and machines interacting with a project,

ensure compatibility between components, and allow pre-

diction of the results of design decisions. Regulating gene

expression is foundational for organism engineering, and flow

cytometry is an excellent means of quantifying large num-

bers of single cell gene expression measurements. At present,

however, flow cytometry data is still often acquired in ar-

bitrary or relative units, without standardizing the mea-

surement by comparison to an independent reference mate-

rial (i.e., one enabling precise calibration of measurements).

Some have proposed standardizing to a biological cultured

reference material (e.g., [3]), but fluorescence from such ma-

terials varies strongly, unpredictably, and often not propor-

tional to the samples it is intended to be a reference for, thus

resulting in a large degree of uncertainty in measurement.

In contrast, stable reference materials have been devel-

oped, in the form of beads with a defined fluorescence quan-

tified in terms of molecules of equivalent reference fluorophores

(ERF; alternately MEF or ME[fluorophore]) [5]. These ref-

erence materials have been primarily employed in medical

applications of flow cytometry, which typically use a small

number of standard dyes rather than a wide range of fluores-

cent protein variants, and where the goals of measurement

are typically focused on the “digital” goal of classifying cells

into distinct populations, rather than the more“analog”goal

of precisely quantifying levels of gene expression.

Fluorescent beads have already been used as a reference

material for engineering gene expression in a number of

studies, including making high-precision circuit predictions

(e.g., [2]), engineering novel biological sensors (e.g., [4]), and

debugging circuit design problems (e.g., [1]). We now aim to

validate these methods through interlaboratory studies and

to develop supporting methods and recommended practices

that will simplify widespread adoption of well-defined units

in flow cytometry, thus accelerating scientific development

and simplifying the engineering of biological organisms.

2. USAGE SCENARIOS
We have identified four key usage scenarios for bead-based

IWBDA 2017 Pittsburgh, USA
Funding for this work comes from the NSF Expeditions in Computing Pro-
gram Award #1522074 as part of the Living Computing Project. We also
gratefully acknowledge support from David Ross and Ariel Hecht of NIST
in the form of data and discussions.

1.#
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2.#
Machine1# ERF1# Voltage1# Machine1# ERF1# Voltage2#

3.#
Machine1# ERF1# Voltage1# Machine2# ERF1# Voltage2#

4.#
Machine1# ERF1# Voltage1# Machine2# ERF2# Voltage2#

Figure 1: Scenarios for use of ERF-calibrated beads

in comparing flow cytometry data.

comparison of fluorescence measurements, along with key

target applications motivating their development. In these

scenarios, an“ERF-quantified laser/filter combination”means

that a set of beads has been assigned ERF values for their

intensity when excited with a particular laser frequency and

observed through a particular optical filter (e.g., via the pro-

cess in [5]). If a significantly di↵erent laser or filter are used,

then the quantification does not apply. The four scenar-

ios (also illustrated in Figure 1) are, in increasing levels of

complexity:

1. Comparison of samples with the same ERF-quantified

laser/filter combination, on the same machine, with

the same voltage settings. Target application: fusion
of data sets.

2. Comparison of samples with the same ERF-quantified

laser/filter combination, on the same machine, but dif-

ferent voltage settings. Target applications: fusion of
data sets, extension of data range.

3. Comparison of samples with the same ERF-quantified

laser/filter combination, but di↵erent machines (mak-

ing voltage comparison moot). Target applications:
fusion of data sets, validation of material or method
transfer.

4. Comparison of samples with di↵erent ERF-quantified

laser/filter combinations (making machine and voltage

comparison moot). Target applications: fusion of data
sets, validation of material or method transfer, com-
parison of multiple signals.

Note that in no case are the target applications focused

on comparison of a cell sample to ERF-quantified beads, per

se. Rather, the goals are focused on comparison of cell sam-

ples, as enabled by comparing each sample to a set of beads.
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Figure 2: Pilot study measurements show a 1.43-

fold geometric standard deviation of mean ERF

measurements across laboratories (laboratories indi-

cated by color; red is the laboratory with unmatched

channels).

Thus, validity of measurements depends primarily on the re-

lationship between cell samples and beads remaining stable

across space and time, rather than the actual relationship

between cellular fluorescent protein and ERF, which is much

more di�cult to assure.

3. PILOT STUDY RESULTS
As an initial test of using ERF-quantified beads to estab-

lish common units for Scenarios 1-3, we conducted a pilot

interlaboratory study of bead-calibrated measurements of E.
coli expressing GFP and mCherry across four flow cytome-

ters, each in a di↵erent laboratory. Three of the flow cy-

tometers had closely matching filters for GFP and mCherry,

while the fourth had significantly di↵erent filters for both.

Five sets of samples of E. coli were prepared at one of the

four laboratories: empty vector, medium GFP expression,

strong GFP expression, medium mCherry expression, and

strong mCherry expression. Each sample was then split into

aliquots and shipped frozen, to be measured at each labo-

ratory in three independently prepared replicates of each

sample at three channel voltages, chosen to spread measure-

ments across the range of each instrument.

Figure 2 and Figure 3 present statistical results from these

samples computed by gating for cell events using a gate

based on the empty vector sample, calibrating to ERF units

using the provided ERF values for SpheroTech RCP-30-5A

beads of the appropriate batch (MEFL for green, MEPTR

for red), then computing geometric mean and standard de-

viation (geometric statistics are used throughout due to the

fact that the distribution of each sample is roughly log-

normal, as is often observed with flow cytometry).

1
Fig-

ure 2 compares the geometric mean of ERF values for each

laboratory. Note that the geometric means are all fairly

close to one another: their standard deviation is 1.43-fold

across all laboratories and 1.23-fold for the three laborato-

ries with matched channels. Examining the geometric mean

1
The strong GFP samples, however, had a very low density

of events, and so for those samples we report the mode of

the upper distribution component instead.
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Figure 3: Geometric mean and standard deviation

for individual samples are clustered tightly for each

laboratory and for each voltage within a laboratory.

and standard deviation of the events in each individual sam-

ple (Figure 3), we find that laboratory-to-laboratory varia-

tion amongst laboratories with matched channels is on the

same order as replicate-to-replicate variation (standard de-

viation 1.05-fold) and voltage-to-voltage variation (standard

deviation 1.11-fold).

4. CONTRIBUTIONS AND FUTURE WORK
As expected, these preliminary results indicate that fluo-

rescent beads can be used for precise quantitative compari-

son of fluorescent protein expression, even despite some de-

gree of variation in instrument configuration. We are now in

the process of scaling up to a larger and more comprehensive

interlaboratory study, with which we hope to definitively es-

tablish the e�cacy of commercially available ERF-quantified

calibration beads for quantification of fluorescent protein ex-

pression. Further goals include validating methods for com-

parison of the expression levels of di↵erent fluorescent pro-

teins, improving analytical software to make these methods

readily accessible, and quantifying the sources of variation.
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1. INTRODUCTION
Despite these many applications for microfluidics in aug-

menting the synthetic biology workflow, adoption of mi-
crofluidics as a potential experimental and test platform
has been slow in the synthetic biology community at large.
The majority of synthetic biologists lack both the exper-
tise knowledge in fluid dynamics and microfluidic design and
the expensive capital equipment for microfluidic fabrication.
Layout of microfluidic designs by hand is both time con-
suming and error prone. In addition, experiments involving
mLSI also require a complex control platform including both
software and hardware for valve control and fluid manipula-
tion.

In [3] the authors undertook an herculean e↵ort to design
and fabricate the MLSI device with only the aid of tools
such as AutoCAD and Solidworks most researchers who use
mircofluidics today spend a large portion of their time in
manually drawing out every physical feature that consti-
tutes the physical device. We found that in the previous
versions of MINT [5, 2] generated layouts that could degrade
the performance of the architecture that was specified. In
this work we leverage MINT [5] and its ability to specify
physical design constraints to easily define large designs and
Fluigi to automatically generate the physical layout of these
designs and report the updates made to the MINT specifica-
tion standard and the architectural updates made to Fluigi
to process these constraints.

2. MINT
Previous versions of MINT [5], required the user to specify

each of the components and lay them out the connections
between each of the component. At that version, generating
grids of reaction chambers required the was a tedious task
which required the user to write scripts that could generate
MINT that would be processed for generating a physical
design. This process of defining individual components and
connections was arduous and hindered the user’s ability to
specify geometric constraints on the generated layout.

Various geometric constraints such as “GRID”, “BANK”
and“TREE”would require the relative component positions
and orientations to be fixed. The implication of statements
such as ”GRID” are that it also requires the place and route
tool to process and satisfy the geometric constraints given
by the designer. In order to satisfy these constraints, an
additional stage in the process that would generate macro
cells and algorithms that will optimize the placement within
these macro cells will also be implemented.

In addition to being able to add geometric constraints.

The updates to the Fluigi and MINT architecture now ab-
stract the layers for manufacturing and the component con-
nectivity, hence the layers can be defined as either “FLOW”,
“CONTROL”, “INTEGRATION” without any worry about
how many feature depths are present in the device. The
components in the “FLOW” layer include everything that
make the device functional. The components in the “CON-
TROL” layer are typically control the components in the
“FLOW” layer. Finally the components in the “INTEGRA-
TION”layer will include all the components that will require
external integrations and imply hard constraints onto place-
ment algorithms to ensure that external integrations are not
blocked by other features. This redesigned architecture can
accommodate multiple fabrication protocols for the devices.

3. FLUIGI
Fluigi is the Place and Route tool that is used for auto-

matically generating the physical layout of the microfluidic
chip. Figure 1 show a high level description of the various
stages where a MINT description of the device is converted
into a physical device. The gray box consists of a parser that
was generated using ANTLR [4], the purple box consists of
the bulk of algorithms that will generate the physical design,
the red box consists of a routines that check if the generated
design is valid or not and finally the orange box consist of
plug-ins that will generate the design outputs.

The new extensions to MINT will require changes to how
the device is modeled in Fluigi. The updated process is de-
scribed in Algorithm 2. In order to accommodate the new
constraints that will be introduced in this work, the Mi-
crofluidic Device model as described in [2] will be completely
restructured.

4. CONCLUSION
Physical design automation remains to be an actively re-

searched problem [1] in the microfluidics space but the con-
trol of these MLSI devices remains yet to be integrated with
the physical design automation flow. Using the current vir-
tual microfluidic device model Fluigi[2] currently generates
control sequences for a single architecture of microfluidic de-
vices. The ability to group components and the facility to
export the device to to a standard format will further allow
the device descriptions to be imported into future tools that
generate control sequences for arbitrary biology protocols in
addition to designing large scale microfluidic designs.
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Figure 1: Fluigi Flow - This diagram describes the various
stages of the Fluigi Place and Route tool that generates the
design files that will be sent for manufacturing.

Require: N := MINT Description
Ensure: N is a valid description
D := generate device(N)

Require:

LB := ({FLOW,CONTROL, INTEGRATIOM} in D
for all LB do

3: G := extract groups(FLOW )
4: C := generate placement cells(D,G)
5: FP := generate flow placements(D,C)
6: for Pin FP do

7: place flow(P )
8: CP := place control(CONTROL,P )
9:

IP := place integration(INTEGRATION,CP, FP )
10: end for

11: route(P,CP, FP )
12: D := import place(D,P,CP, IP )
13: RESULT = design rule check(D)
14: if RESULT then

15: generate output()
16: else

17: redo()
18: end if

end for

Figure 2: Place and Route: The above algorithm describes
the place and route process and highlights the dependencies
between the layers within each individual LAYER BLOCK
that consists of a FLOW, CONTROL and INTEGRATION.
These dependencies determine the order in which they are
placed and routed. The bulk of the placement is determined
during the place flow().
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ABSTRACT 

We describe here our approach to translating machine reading 
outputs, obtained by reading biological signaling literature, to 
discrete models of cellular networks. Our approach starts with 
creating a representation format that allows for receiving the 
information from literature and converting it into mechanistic 
discrete models. The representation format can also be considered 
as a scaffold for the retrieved information and as a guide for the 
reading engines. Here, we use outputs from three different reading 
engines, and describe our approach to translating their different 
features. 

KEYWORDS 
Discrete Logical Modeling, Cell Signaling Networks, Automated 
Literature Reading. 

1 INTRODUCTION 
Biological knowledge is voluminous; it is nearly impossible to 
read all scientific papers on a single topic. When building a model 
of a particular biological system, researchers usually start by 
searching for existing relevant models and by looking for 
information about system components and their interactions in 
published literature. 

Although there have been attempts to automate the process of 
model building [1], most often modelers conduct these steps 
manually, with multiple iterations between (i) information 
extraction, (ii) model assembly, (iii) model analysis, and (iv) 
model validation through comparison with most recently 
published results. To allow for rapidly modeling the complexity of 
diseases like cancer, and for efficiently using ever-increasing 
amount of information in published work, we need representation 
standards and interfaces such that these tasks can be automated. 
This, in turn, will allow researchers to ask informed, interesting 
questions that can improve our understanding of health and 
disease. 

To this end, the contributions of the work presented in this 
abstract include: a novel standardized representation of the 
information used to create executable models of cellular signaling 
and an approach to effectively translate machine reading output 
to discrete models of cellular signaling. 

2 FRAMEWORK OVERVIEW 
To automatically incorporate new reading outputs into models, we 
have developed a reading-modeling-explanation framework, 
called DySE (Dynamic System Explanation), outlined in Figure 1. 
This framework allows for (i) expansion of existing models or 

assembly of new models using machine reading, (ii) analysis and 
explanation of models and (iii) generation of machine-readable 
feedback to reading engines. In this paper, we describe the front 
end of the framework, the translation from reading outputs to the 
list of elements, and their influence sets, including any available 
context information. 

	
Figure 1: DySE framework. 

3 MODEL REPRESENTATION FORMAT 

To enable fast and accurate translation from a reading engine 
output to our modeling format, our models are first created in the 
form of a spreadsheet. It is important to note here that the 
spreadsheet representation does not include final update rules, that 
is, the spreadsheet version of the model is further translated into 
an executable model as an input to a simulator. Each row in the 
spreadsheet corresponds to one specific model element (i.e., 
modeled system component), and the columns are organized in 
several groups: 1) information about the modeled system 
component, 2) information about the component’s regulators, and 
3) information about knowledge sources. This format enables 
straightforward model extension to represent both additional 
system components as new rows in the spreadsheet, and additional 
component-related features by including new columns in the 
spreadsheet. The addition of new columns occurs as various parts 
of the framework become more sophisticated. 

The first group of fields in our representation format includes 
system component-related information. This information is 
either used by the executable model, or kept as background 
information to provide specific details about the system 
component when creating a hypothesis or explaining outcomes of 
wet lab experiments. 
A. Name – full name of element, e.g., “Epidermal growth factor 

receptor”. 
B. Nomenclature ID – name commonly used in the field for 

cellular components, e.g., “EGFR” is used for “Epidermal 
growth factor receptor”. 

C. Type – these are types of entities used by reading engines 
such as protein, chemical, RNA, gene, biological processes. 
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D. Unique ID – we use identifiers corresponding to elements 
that are listed in databases such as UniProt, PubChem, 
HGNC, MeSH [2]. 

E. Location - we include subcellular locations such as plasma 
membrane, cytoplasm, nucleus or the extracellular space. 

F. Location identifier – we use location identifiers 
from Gene Ontology (GO) database. 

G. Cell line – obtained from reading output. 
H. Cell type – obtained from reading outputs. 
I. Tissue type – obtained from reading output. 
J. Organism – obtained from reading output. 
K. Executable model variable – variable names  

currently include above described fields B, C, E, and H. 
The second group of fields in our representation includes 

component regulators-related information that is mainly used 
by executable models, with a few fields used for bookkeeping, 
similar to the first group of fields. 
L. Positive regulator nomenclature IDs – list 

of positive regulators of the element. 
M. Negative regulator nomenclature IDs – list of 

negative regulators of the element. 
N. Interaction type – for each listed regulator, in case it 

is known whether interaction is direct or indirect.  
O. Interaction mechanism – for each known direct 

interaction, if the mechanism of interaction is known. 
Examples of such mechanisms are Activation, Inhibition, 
Binding, or Phosphorylation. 

P. Interaction score – for each interaction, a confidence 
score obtained from reading. 

The third group of fields in our representation includes 
interaction-related provenance information 
Q. Reference paper IDs – for each interaction, we list IDs 

of published papers that mention the interaction. This 
information is obtained directly from reading output. 

R. Sentences – for each interaction, we list sentences 
describing the interaction. This information is obtained 
directly from reading output 

4 FROM READING TO MODEL 

We obtain outputs from three reading engines, namely REACH 
[3], RUBICON [4], and Leidos table reading (LTR)[5]. The 
REACH engine can extract simple direct and indirect interactions 
such as activation and inhibition as well as extracting nested 
interactions that have an element “C” which can positively or 
negatively regulate the activation or inhibition of element “B” by 
element “A”. The RUBICON engine provides two reading 
outputs, one for direct and one for indirect interactions. For the 
indirect interactions, it creates a chain of elements that starts with 
the regulator and ends with the regulated element and includes the 
intermediate elements forming a path from the regulator to the 
regulated elements. The Direct output file contains additional 
information such as Confidence and Tags. The Confidence 
indicates how confident the reading engine is about the extracted 
interaction, and it can be LOW, MODERATE, and HIGH. The 

Tags includes epistemic tags such as 'implication', 'method', 
'hypothesis', ‘result’, ‘goal’, or ‘fact’. Additionally, LTR engine 
performs table reading and can extract more detailed biological 
information since tables tend to describe a highly specific 
experiment about interacting components. 

The three reading engines provide output files with similar but 
not exactly the same format as the format described in section 3. 
For example, RUBICON output files have three additional 
columns, namely Confidence, Tags, and the intermediate elements 
of a regulation path. REACH output includes information about 
the formation and dissociation of protein complexes (two 
elements) in one row, which needs to be translated into the format 
in section 3 where each row represents only one element. Figure 2 
shows an example of the regulation of protein complexes where 
the formation of protein complex AB can be activated or inhibited 
by element C. Also, Table 1 shows how we translate REACH 
output with interaction that includes a complex into our format. 

Figure 2: Regulation of Complexes. (a) complex formation, 
(b) complex dissociation. 

 

Table 1: Translating REACH output for complexes into DySE 
format 

 Fig. 2(a) Fig. 2(b) 
Element 
Name 

PosReg Element 
Name 

NegReg 

REACH {A,B} C {A,B} C 
DySE Row1 A B and C A B and C 

Row2 B A and C B A and C 

5 CONCLUSION 
This paper describes the design of a standardized format for the 
processing of machine reading outputs from multiple readers. Our 
automated framework allows for executable models to be 
assembled and tested at a completely new scale and to incorporate 
information at a level not previously possible. We hope that this 
formalized representation of research findings for the purpose of 
creating dynamic models will improve knowledge and increase 
our understanding of biological systems to guide future studies. 
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1. INTRODUCTION
Recent advances in genetics and genomics technologies

have made it possible for scientists to produce large-scale
functional data to characterize biological process in a rel-
atively a short time. Although that it should be obvious
that many studies may benefit from these massively avail-
able datasets, surprisingly only few e↵orts have attempted
to interface synthetic biology with computational sciences
that deal with data.

In this work, we introduced Garuda (short for: Genetic
Automation: Recommendation Unit and Data Analyzer),
a programming-biology platform that consists of collections
of data mining, pattern analysis, and machine-learning algo-
rithms tailored for synthetic biology purpose. As a computa-
tional application that learns from data, Garuda is attached
to a centralized data management tool, named Clotho [1].
Garuda runs pattern analysis and data mining techniques
to come up with certain insights from hidden information
(i.e. information that was not stored by users explicitly),
and meaningful recommendations may guide users for de-
signing or even debugging their experiments. As the data
management part of Garuda allows cross-experimental data-
aggregation between multiple users, this tool can also be
employed as a knowledge-sharing mechanism in a project
involving a large number of researchers.

As proof-of-concepts, we have utilized Garuda in two dif-
ferent study cases: 1) a task of finding the subtle sources of
toxicity, and 2) a task of characterizing genetics circuits.

2. OVERVIEW
Garuda is a computational platform with a novel capabil-

ity to extract hidden patterns across large datasets and pro-
duce meaningful insights from this data. General overview
of Garuda’s architecture is shown in Figure 1.a below.

In a high level, Garuda system can be divided into two dif-
ferent sub-systems, the database and the machine learning
layer. The first-mentioned deals with data persistence and
data management. Garuda is designed as a modular client-
side application that can be coupled with any database as
a back-end for data storage. Currently, Garuda supports
Clotho (previously developed at the CIDAR lab) and Syn-
biohub (previously known as SBOL) which has been uti-
lized broadly in synthetic biology communities. The second-
mentioned consists of collections of machine learning algo-
rithms that can be employed to solve various problems as de-
fined by users. As these algorithms reside within Garuda as
independent modules (color-coded in Figure 1.a: red for un-
supervised learning, blue for supervised learning, and green

for regression model), users can easily add or modify new
scripts to support di↵erent models or functionalities. Presently,
Garuda supports Java and Python, and provides API for
communication with other applications through RESTful
connection. Garuda also provides a nice web-based user in-
terface through which users can feed the machine learning
engine with data and questions.

3. RESULTS

3.1 Sources of Toxicity
Toxicity is one of the most challenging problems in molec-

ular and synthetic biology to date. Certain combination of
genetic parts may not operate as expected when they are put
together, even when there is no direct harmful interaction
between individual components. Tracing all combinations
by hand or ad-hoc debugging process to find the toxicity
sources can be very tedious.

In contrast, Garuda can tackle this problem in an auto-
mated fashion by performing machine learning-based eval-
uation over large genetic design datasets. Using multiple
regression, Garuda identifies possible toxic candidates by
filtering the most significant parameters that deviate the
normal distribution of a pool of healthy genetic parts.

Figure 1.b shows the performance test of the regression
model over di↵erent parameters. For these purpose, we
have generated artificial data consisting n-number of ge-
netic designs (n = 100 � 1000), with the following assump-
tion. Each design is constructed from m-number of parts
(m = 2� 10), and each part is either randomly assigned as
”toxic” or ”healthy”. Therefore, we have a list of toxic parts
and a list of healthy parts, and each list is associated with
one normally distributed population with mean=µ (µt, µh)
and standard deviation=� (�t,�h), representing the toxic
and healthy distribution. When the design consists of any
part from the toxic lists it is then assigned with a growth-
rate drawn from the toxic distribution (otherwise, from the
healthy distribution).

Multiple regression model is then employed to predict the
candidates for the toxic parts and plotted in two di↵er-
ent modes: predictive (red-lines), and accurate (blue-lines).
From our observations, the model worked with 90% of ac-
curacy if Garuda was provided with 500 designs, less than
25% of toxic parts, and the performance was better when the
toxicity-healthiness are derived from two well-spread toxic
and healthy distributions.

3.2 Genetic Circuits Characterization
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Figure 1: (a) General architecture of Garuda, (b) Simulation results of the sources of toxicity problem, (c) Simulation results
of the genetic circuits characterization problem

In-silico Bio-Design Automation (BDA) tools, such as Cello
[2], provide abstraction and accelerate the design and imple-
mentation of genetic circuits. But these circuits are some-
times do not behave as expected. This is due to the inherent
high complexities of living organisms and also limited by the
scope of understanding of hidden biological phenomena. It-
erative design-build-test-learn cycles to improve the design
reliability and achieve a higher rate of the correctly working
circuits can be extravagant in terms of time and resources.

In this work, we have used Garuda to generate models to
characterize experimental data from Cello. Garuda used a
black-box filtering approach to classify the in-silico designs,
into two classes: ”defective” and ”functional” (in supervised
learning, this module is termed data classifier). In partic-
ular, Linear Support Vector Machine (SVM) algorithm [3]
was selected as the problem solving approach.

Figure 1.c shows the simulation results of two di↵erent
models of Linear SVM (with no weighting, and with class
weighting). The dataset contains 55 di↵erent circuits, which
is divided into training and testing data, with the ratio 3:2
(this ratio is arbitrarily chosen based on typical performance
of linear SVM). We have created a mxn matrix for the oc-
curence of parts within each circuit (with m =number of
circuit, and n =number of unique parts), and utilized this
as the feature vectors for the model. For example, when
a circuit consists of one particular part, then a value of ’1’
is assigned to its correspondent column in the matrix (or
a value of ’0’ if otherwise). We then trained the model.
The no-weighting model all data points have equal weight,
while the class-weighting model assigned di↵erent weights to
parts according to how often they are occured in the whole
circuits. From our observation, we found that SVM with
class-weighting model has better performance.

4. DISCUSSION
To date, many Bio-Design Automation tools have been

introduced and they have shaped innumerable important
breakthrough in synthetic biology. However, most of these
tools (if not all) still lack in the following features: 1) task-

specific, 2) requires extensive libraries, 3) reusability issues
when working with similar problems but di↵erent libraries,
and vice-versa, and 4) does not benefit from multiple users
knowledge.

On the other hand, large amount of data are produced
daily from many di↵erent labs thanks to the advance in ge-
netics and genomics technology nowadays. We have devel-
oped Garuda, a programming-biology platform that learns
from data. As the field of synthetic biology is continously
growing, and more data are being produced everyday, Garuda
has a big potential to guide and assist experimentalists, with
its novel capability to mine hidden information for large
datasets.

While Garuda is intended to be an application-agnostic
and data-hungry tool (as long as it is provided with data,
custom applications can be re-written easily), we have pro-
vided two di↵erent study cases as the proof of concept.
Future directions of this work include experimental vali-
dation and cross-validating the predictions to improve the
accuracy of the tool through reinforcement learning mech-
anisms. Garuda will also be publicly available online (for
non-commercial purpose) via Web-UI and RESTful API.
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1 MOTIVATION
The popularity of CRISPR RNA-guided genome editing makes it an
ideal test case developing automated nucleic acid design systems.
First generation CRISPR genome editing has yielded a number of
decision rules that are used by bench scientists to select one or
more guide RNA sequences for a particular application [2]. These
decision rules use sequence-level and contextual features of the
predicted RNA-guided endonuclease (RGEN) cut sites in the target
genome to predict the activity, speci�city, and post-repair outcome
of the RGEN in real world experiments.

2 MODEL DEVELOPMENT
We assembled a data warehouse of 640,455 of experimentally tested
guide RNAs from public sources [4][5], collaborators, and our own
projects to systematically test 4,906 predictors of guide RNA per-
formance (model features) across multiple species, cell lines, and
protocol variations. We tested whether various on-target and o�-
target predictors [2][6][1][3] generalize across species and cell
lines. We also assessed various measures of guide performance,
devised appropriate statistics for normalizing guide performance
data across experiments, and investigated how prediction accuracy
changes with incremental increases in the amount of prior data. We
applied these results to derive improved predictors and measures
of guide RNA activity and speci�city.

3 MODEL EVALUATION
For sequence-based predictors, the derived weights for the 1-mer
(single base) features were similar to the result shown previously
by Doench and Xu. Both the identity and position of a base have
an e�ect on guide performance and the magnitude of in�uence
increases with proximity to the guide’s PAM site. Our human and
mouse models assigned the largest weights to the 3-mer nucleotide
triplets, including the known stop codon TAA, and GC content at
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IWBDA 2017, August 2017, Pittsburg, PA USA
2017. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The de�nitive Version of Record was published in Proceedings
of IWBDA, August 2017 , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

1   DESIGN

2   SYNTHESIS

3   CLONE

4   PACKAGE

5  POOLED SCREEN

6   ANALYZE

Figure 1: Overview of major steps in the protocol, adapted
from [5] and [4]. The representation of this plasmid pool
was measured by NGS and transfected into a packaging cell
line. Virons where harvested, assayed for titer, and used to
transduce target cell lines. Cell cultures were sampled at sev-
eral time points following transduction. DNA was extracted
and space sequence counts were determined via deep se-
quencing using primers speci�c to a constant portion of the
viral progenome.

the expense of biochemical features like transcript representation.
The distribution of predictor magnitudes followed a reasonably
smooth power law distribution from between 0.005 and 0 with
roughly the top half of magnitudes between 0.005 and 0.001.. There
were no “break away” predictors that dominated the model. The
widely used predictor of percent peptide, the distance of the cut
site from the start codon into the coding DNA sequence, received a
low weight of 3488 of 4906 overall predictors, consistent with our
prior, unpublished work.

4 DISCUSSION
Our investigation yielded several results that contradicted our hy-
potheses and suggest the need for context-aware algorithms. First,
models of guide RNA performance did not generalize e�ectively be-
tween species, yet did generalize across cell lines with some loss in
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Figure 2: Comparison of predicted guide RNA performance with actual guide RNA performance. On the left is the model
generated as part of this work for guide RNAs targeting the human (upper) and mouse (lower) genomes. On the right are the
predictions the model developed in [1] for these same guide RNAs. Models were evaluated by comparing both Spearman and
Pearson correlation coe�cients across an unseen data set for guide RNAs targeting the human and mouse genomes. For com-
parison, repeat measurements of these same guide RNAs have an inter-replicate Spearman correlation of 0.78. Similar relative
di�erences where obtained for the mouse guide RNAs, but with lower Spearman correlations of 0.44 and 0.22 respectively.

accuracy. Second, the diversity of the prior data set and the process-
ing of experimental measurements had larger e�ects on predictor
performance than model complexity or volume of prior data. Third,
e�ective predictors of guide RNA performance at the population
level may be overridden by the functional context of each target
sequence. Finally, the quality and breadth of this prior knowledge
about the target genome (i.e. annotation tracks) had a large impact
on prediction accuracy. These �ndings suggest there is a signi�cant
unmet need for better data resources for non-human genomes and
for best practices for characterizing and comparing RNA-guided
endonuclease activity and speci�city between experiments.
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1. INTRODUCTION
Molecular biologists and biochemists rely on the use of

fluorescent probes (fluorophores) to take measurements of
their model systems. These fluorophores fall into various
classes (i.e. fluorescent dyes, fluorescent proteins, etc.), but
they all share some general properties and required equip-
ment for data acquisition. Specifically, all fluorophores have
an excitation and emission spectra and require some light
source (typically a laser) to excite them and light detectors
with filters to capture emitted light within a range of wave-
length. While they all share some common properties, se-
lecting an ideal fluorphore or set of fluorophores for a partic-
ular measurement technology or designing the measurement
technology parameters around a decided set of fluorophores
is a multidimensional problem that is di�cult to solve solve
with ad hoc methods.

Historically, decisions on fluorescent reporter selection and
fluorescence detection machine specifications were done by
studying individual fluorophores and referencing curated guides[3]
by experts in the field. More recently, some software tools
have been developed and put online to help biologists make
selections of fluorophores by plotting data for multiple flu-
orophres on individual lasers and filters to aid in this op-
timization[1, 2]. While these resources contain many flu-
orophore spectra, no existing tool will plot excitation and
emission spectra for fluorophores on multiple lasers simulta-
neously and correct them for brightness and other important
physical properties. Moreover, there are no known tools that
house algorithms for selecting an optimized or optimal set
of fluorophores based on maximizing signal-to-noise ratio for
each signal or optimizations for other physical properties like
oligomerization.

Here we detail the computational complexity of solving
these problems and describe a set of algorithms for solving
these problems e�ciently to arrive at solutions optimized for
a maximum signal-to-noise ratio, material cost, and other
additional parameters. We have housed these algorithms
in a web-based software tool that contains curated data sets
for large sets of available fluorophores and measurement ma-
chine components.

Figure 1: Fluorescent reporters are either engineered to

be produced in the cell as fluorescent proteins or ap-

plied in vitro after fixation with conjugated antibodies

or other techniques. The cells are then fed into a mea-

surement machine where lasers excite the reporters and

their emitted light is captured by filtered light detectors.

2. COMPUTATIONAL COMPLEXITY
The task of exhaustively searching and choosing the right

set of fluorescent reporters for a given cytometer, is a prob-
lem with factorial complexity. The problem statement can
be formulated as:

Problem 1. For a set of Fluorophores X, and a cytome-

ter C, which has Y lasers, where each laser y

i

2 Y has a set

of Detectors Z

i

, find a set X

n

2 X (where | X
n

|= n) such

that the average signal-to-noise (SNR) is the highest for any

X

n

.

SNR for a specific fluorophore x 2 X

n

for a detector z is
defined as:

emission spectra of x within z

sum of all emission spectra of x
i

2 {X
n

� {x}} in z
(1)

To exhaustively search for X
n

, every permutation of fluo-
rophores has to be checked against every combination of all
available detectors (Z is the union of all detectors of every
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Figure 2: An example of a graph produced by the web tool, showing the signal and noise in a specific detector. In

this case, the Signal in any detector is shown in green while noise is shown in purple. In this run, 3 fluorophores were

chosen out of 14 possible options for the cytometer in Boston University: DsRed in detector E of the Yellow-Green

Laser with an SNR value of 75.506, mCitrine in detector A of the Blue-Green Laser with SNR 30.271, and mAmetrine

in detector B of the Violet laser with SNR 27.044.

laser in Y ). The overall complexity can be generalized as: .

x

P

n

.

z

C

n

3. WEBTOOL
The algorithms are connected to a front-end user interface

in which users can download large sets of example data or
upload their own data to evaluate both their current choices
of fluorophore usage and machine configurations and com-
pare them to optimized solutions. Users can enter the cy-
tometer settings by uploading a standard cytometer config-
uration file (which contains the laser and detector meta-
data) as well as a list of all available fluorophores along
with relevant metadata for each fluorophore (such as nor-
malized emission and excitation spectrum). Users can then
specify the number of fluorophores, n, they wish to use in
their circuits concurrently and can choose one of the fol-
lowing algorithms to get the best n fluorophores that have
the highest average SNR ratio over all fluorophore-detector
combinations:

• Exhaustive search: In this approach, every permuta-
tion of n fluorophores are compared against every com-
bination of n detectors in the cytometer. The permu-
tation with the least overall SNR value is chosen.

• Beam search: In this approach, only a subset of com-
binations of detectors are considered based on the Rie-
mann Sum of the excitation spectrum of a fluorophore
compared to the width of the detector. The detector
combinations are preprocessed and the top p% permu-
tations are chosen where x is specified by the user.

• Simulated annealing: In this approach, a random per-
mutation of fluorophores and combination of detectors
are chosen as the starting point of the algorithm. The
algorithm runs for a fixed number of iterations where
at each iteration, a random fluorophore or detector is
replaced if the new SNR is greater than the current
SNR or if the annealing schedule allows a lower SNR
score.

The result of each run is specified as a set of fluorophores
along with the corresponding laser and detector, and the

SNR value for that specific detector. The web-tool also dis-
plays a graph showing the signal and noise for each detector.
Fig 2 is an example of one such graph.

The web-interface will be able to increase the quality of
the signal-to-noise in the measurements that users must take
and in the cases of fluorescent dyes, minimize their cost of
material expense.

4. EXPERIMENTAL VALIDATION
Since fluorescent proteins are often not expressed in equal

amounts, dyes can bind with di↵erent a�nity, and lasers and
detectors can be toggled for sensitivity, we needed to validate
that our predicted signal-to-noise ratios matched observed
signal-to-noise ratio on a measurement machine. We ran an
experiment in which we expressed five di↵erent fluorescent
proteins in individual E. coli strains and three fluorescent
dyes conjugated to non-fluorescent beads provided by the
dye manufacturer.

To test how signal-to-noise was impacted by adjustments
in laser power and voltage, we tested each strain and dyed
beads at di↵erent voltages on each of five lasers and their
respective optimal detector voltages. After correcting data
for brightness and excitation and emission percentages ac-
cording to machine settings, normalizing to absolute units
with rainbow calibration beads, and subtracting autofluores-
cence, we found that our data was consistent with prior find-
ings that increasing laser power and detector voltage scaled
linearly with the produced signal but generally decreased
signal-to-noise ratio. To confirm that our predictions with
these corrections were consistent, we tested the same set of
strains on a di↵erent measurement machine and produced
the predicted results.
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ABSTRACT 

A cell-free Transcription-Translation (TX-TL) method1 is 
proposed for the measurement of mammalian gene-expression 
where acoustic liquid handling is used to assemble reactions, thus 
generating data in high-throughput. Several technical challenges 
were solved in the process of integrating wetware-hardware-
software to get a reliable workflow. The key features of the basic 
TX-TL reaction are presented and the experimental design for 
library screening or the characterization of regulatory elements is 
outlined. 

1 INTRODUCTION 
The tediousness and costliness of tissue-culture methods is one of 
the factors that limit the growth of the mammalian synthetic 
biology field. In contrast, cell-free TX-TL reactions can be 
assembled fast and take only 5 hours to run, use little reagents and 
can be automated (Figure 1). 
 

 

Figure 1: A transfection experiment involves manual steps, 
takes days and results are obtained by flow cytometry or 
microscopy. In contrast, TX-TL experiments can be 
automated using liquid handling technology and the output is 
measured by a fluorescent plate-reader. 

 
Tip-based liquid handling is a popular choice in lab automation, 
but operates in the µL range and is slow, two factors which are 
major disadvantages for the TX-TL method. Microfluidics can 
operate with droplets at low volumes but is often limited in 
throughput and the flexibility of experimental design. Acoustic 
liquid handling technology has the advantage of working with 
micro-plates ideal for high-throughput, and is fast (750,000 liquid 
transfers per day) with nL accuracy. Furthermore, Labcyte’s Echo 
machines were also an ideal solution because their software takes 
instructions that are easy to generate programmatically. 

2 METHODS 

2.1 Acoustic liquid handling automation 
The CherryPick software from Labcyte takes a CSV file with a 
list of liquid transfer steps to carry out. This file is generated by 
method-specific code written especially for TX-TL experiments 
that takes high-level parameters such as the number of replicates, 
DNA constructs etc. (Figure 2). The experiments are designed so 
that each given DNA construct is tested in combination with all 
the regulators, at all the specified concentrations. Blank reactions 
with no DNA and Positive controls with a specified DNA 
concentration are also added to the list of reaction types. A key 
feature is that each TX-TL reaction is randomly assigned to a well 
on a 384 well-plate in order to distribute error evenly across the 
plate and counter any potential position associated effects. The 
last row of the plate is reserved for FITC standards, which are 
optionally added for MEFL (Molecules of Equivalent 
Fluorescein) unit conversion. Finally, the amounts of the reagents 
needed for a given experiment are also calculated by the 
algorithm.  
The output includes three files. One contains instructions for the 
biologist about how to prepare the source plate containing the 
reagents. The second contains machine instructions for the liquid 
transfer steps and the third stores all the information about the 
given experiment for downstream data analysis. 

2.2 Molecular Biology 
Plasmids were purified (QIAGEN Plasmid Plus Kits) and their 
concentration was quantified using 20nl PicoGreen reagent in a 
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total reaction volume of 20ul in 384 well plates (Thermo Fisher 
P11496). The TX-TL reactions were assembled from the  1-Step 
Human Coupled IVT Kit (Thermo Fisher 88881) in a total 
reaction volume of 2uL in clear bottom small-volume 384 plates 
(Greiner 788 096), sealed, and measured with bottom-optic setting 
of a Biotek SynergyMx plate reader.  
 

 
Figure 2: The automated TX-TL workflow relies on custom 
software to generate both the human readable and the 
machine instructions for carrying out an experiment.  

3 RESULTS 

3.1 Method optimization 
Several technical problems had to be tackled when taking the lab-
bench method to an automated workflow. First, the total reaction 
volume and the expensive TX-TL component were minimized to 
a 2µL total volume and 60% TX-TL component. Second, DNA 
purification and quantification methods were optimized. In order 
to neutralize any effects resulting from the plate layout or the 
order that samples are added to the plate, a randomization step in 
the assignment of the location of each sample to a well was 
included in the code. However, this first increased the error to an 
unacceptable extent and it was found that the homogeneity of the 
TX-TL mix was compromised at a centrifugation step, which was 
then eliminated to solve the problem. Lastly, the MEFL 
conversion of fluorescence and a constant positive control 
constitutive GFP construct provides the check on the quality of 
the TX-TL activity. 

3.2  Characterization of the TX-TL reaction 
Time course measurements show saturation of the reaction at 5h, 
which was chosen as the time point for data analysis on Figure 
3B. The saturated GFP levels reflect the production rates in the 
linear phase of expression. With respect to DNA concentration, 
the reaction saturates at about 4nM for the positive control DNA 
(pCFE-GFP).  

Figure 3: A: Time course measurement of fluorescence in TX-
TL reactions. Blank reaction without DNA, low (L),  medium 
(M) and high (H) template DNA concentrations are shown, 
corresponding to figure B. Error bars represent standard 
deviation from 3 replicates. B: Saturation curve of pCFE-GFP 
plasmid constitutively expressing GFP at 5h time point. Blank 
corrected fluorescence is shown, error bars represent 
standard deviation from 3 replicates. 

4 DISCUSSION 
The potential range of applications is wide and the new method 
may be applied for screening and characterizing new regulatory 
elements for mammalian synthetic biology and sample a genetic 
and experimental design space otherwise unreachable by 
traditional tissue-culture methods. Furthermore, the approach of 
assembling TX-TL reactions with the presented method can be 
applied to other organisms. In-depth data was acquired to feed 
models of gene-expression regulation in B. megaterium cell-free 
this way, for example2.  
The software tools are in the process of being made available 
online in the form of a Web Application for those with little 
coding experience. Interfacing with the liquid handling platform 
through the downloadable machine instruction files will lower the 
barrier for a wider user base. Not only the testing, but also the 
assembly of genetic constructs can be automated and this 
approach, where web application software is used to generate 
instructions for automated platforms is used extensively at the 
London DNA Foundry. Building up the software tools and 
protocol databases for automation by acoustic liquid handling 
methods could greatly benefit the synthetic biology community. 
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ABSTRACT 

Models of biological systems are usually validated manually, 
through very labor-intensive comparisons with published 
experimental observations making the process slow and 
imprecise. We propose a tool to automate the creation of temporal 
logical properties from data. These properties can represent steady 
states or transient changes of individual model elements, or 
relative values of different model elements. Automation of 
property creation from data can significantly speed up and 
improve both model testing and extension to create a better 
understanding and explanations of biological behaviors. 

CCS Concepts 
• Applied computing → Life and medical sciences → 
Computational biology → Biological networks 

Keywords 

System properties; signaling cascades; protein interactions; model 
validation. 

1. INTRODUCTION 
The creation of in silico models of signaling cascades can 
significantly aid in biomedical research. Not only can these 
models reduce the expense and time of using in vivo disease 
models, but they can also utilize the vast amount of publicly 
available biological data. However, testing computational models 
can also be time-consuming. We propose an automated pipeline 
that can assist in validating models, and testing additions to the 
model. (Figure 1) 

2. RECRUITMENT OF HIGH-
CONFIDENCE INTERACTION DATA 
To check established model output and recruit new model 
elements, high-confidence data must be gathered for all 
interactions. The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING)[1]  stores  several different types of data 
on protein-protein or protein-gene interactions, including co-
expression, homology, and experimental data. The STRING API 
can be utilized to quickly mine interaction data. A Python script 
was written to handle API requests and return the output (Figure 

2). 
 
Existing Model Elements  New Elements 
JUN 
ATF3 
MAPK8 

MAPK9 
SMAD3 

 
ATF3 SMAD3 score:0.971|escore:0.36|dscore:0.9|tscore:0.589 

JUN SMAD3 score:0.989|escore:0.396|dscore:0.9|tscore:0.837 

MAPK8 SMAD3 score:0.867|ascore:0.07|escore:0.387|tscore:0.78 

MAPK9 JUN score:0.998|escore:0.662|dscore:0.9|tscore:0.96 

MAPK9 ATF3 score:0.456|escore:0.178|tscore:0.366 

MAPK9 MAPK8 score:0.986|pscore:0.008432|escore:0.864|dscore:0.9|tscore:0.015328 

 
Figure 1: Example network (top) with sample STRING output 
(bottom). The overall score is composed of several different 
subscores - experimental (escore), textming (tscore), phyletic 
(pscore), database (dscore), and coexpression (tscore). 
 

2.1 Existing models 
To use the Python script to verify a model, all existing model 
elements are compared for interactions through STRING. The 
output, a list of interactions and the associated STRING 
confidence score, will then be used to create properties for model 
validation. The output is a list of interactions with a total score 
above a specified threshold. The total scores range from 0 (least 
confident) to 1 (most confident).  The total score is composed of 
seven different subscores. However, the relevant subscore is the 
experimental score (escore), which estimates the confidence of a 
direct interaction between two objects by methods such as a 
Western blot. By only considering the escore, all indirect 
interactions (such as coexpression) can be discarded.  
 

 
Figure 2: The automated pipeline for the creation of system 
properties to extend an existing model.  
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2.2 New models 
To add new elements to an existing model, experimental data on 
any possible interactions is needed. The potential model elements 
can come from a variety of sources: differentially expressed genes 
(DEGs), biomedical literature, or other experimentally-based 
methods. These potential model elements are then cross-
referenced with every existing model element in STRING. Based 
on the e-score, new model elements can be selected. This step 
eliminates the need for extensive knowledge of the biological 
signaling pathways to identify new elements. 

3. PROPERTY CREATION 
After selection of interactions with high e-scores, properties 

can be created that describe the behavior of the element within 
the model. For example, a property indicating that protein Jun 
reaches high levels early after stimulation start and remains high 
for long period of time can be written as follows:  

F[100]G[900](Jun=HIGH). 

where F[100] indicates that Jun reaches HIGH level by step 100 
during simulation, and G[900] indicates that Jun remains at high 
level for 900 steps.[2] 

For model extension, the new elements can be added, using the 
time and expression data to accurately describe its behavior. For 
model verification, the final state of each element should be 
compared to the existing model. For either method, the final 
output is a list of properties that describes the model.  By using 
biological data to automate model validation, the speed and 
accuracy of this process can be improved. 

4. MODEL VALIDATION 
Creation of system properties for model validation should be done 
independently of the existing model framework. To do so, all data 
used for property creation should come from experimental data. 
When possible, time-course data should be used to inform 
property creation. However, the emphasis should be on the final 
state of the object. 

5. MODEL EXTENSION 
To estimate the timing of model element activation or 
deactivation, the existing model framework can be used. By 
identifying which element is downstream, the activation time of 
the upstream regulator can be used. When the upstream regulator 
has reached a steady state in the model, that time point can be 
marked as the point of activation for the downstream element. 
STRING can also be used to determine the direction of action 
between the two objects, and to provide experimental data that 
may include time-courses 

6. CONCLUSION 
Using a system of temporal logical properties to represent cellular 
signaling networks can be utilized for model extension or 
validation. Furthermore, automating the creation of these 
properties allows for fast testing of built models, and can 
significantly speed up the process of identifying models that best 
represent real systems. 
Our next steps will include additional methods to increase 
accuracy and speed of property creation. These approaches will 
also incorporate a function to estimate direction of action between 
two objects based on their biological functions. For example, the 
direction of action between a phosphorylated protein and a 
phosphatase can be reasonably estimated.  
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ABSTRACT 
Due to its ease-of-use, microfluidics has become a ubiquitous tool 
for researchers within the field of synthetic biology. With the ability 
to optically image cells reliably, microfluidics has allowed 
researchers to take cellular-level measurements at a low cost. 
However, despite the low cost for building microfluidic devices, 
the peripheral equipment required for fluidic control are expensive 
and difficult to customize. The result is that although microfluidic 
tools are empowering for scientific advancement, controlling 
experiments accurately and with a variety of inputs and conditions 
remains challenging. Here, we present a set of low-cost, open-
source tools that enable researchers to design well-controlled, 
customized microfluidic experiments at a low cost. We do this by 
leveraging additive manufacturing and commonly available 3D 
printing technologies. We have built a suite of microfluidic 
peripheral systems that include a fluid handling system, a 
temperature controller, and an optical monitoring device. These 
systems form a low-cost, feedback-controlled, automated 
microfluidic bioreactor in which living cells may be cultured and 
analyzed in real-time. It is our objective to use these open-source 
components to automate the process of cell culture, phenotypic 
selection, and epigenetic actuation. We expect our system to affect 
the fields of systems and synthetic biology.  

CCS CONCEPTS 
• Applied computing → Systems biology 

KEYWORDS 
Automated Bioreactor, Microfluidics, Synthetic Biology, Additive 
Manufacturing 
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1. INTRODUCTION 
The facile approach for using well-established photolithography 
techniques[1] to design and fabricate microfluidic devices has 
enabled research across many scientific disciplines, particularly 
within bioengineering and biomedical research[1-5]. Organ-on-a-
chip systems promise to revolutionize the investigation of 
underlying biological mechanisms and allow for simplified testing 
of the efficacy of various treatments of disease[6, 7]. Microfluidic 
systems have also been employed to enable automated synthetic 
biology assembly techniques to occur within a small package, like 
Golden Gate and Gibson assembly techniques[8]. Additionally, 
microfluidics has been used as a means for culturing bacteria and 
other living cells for live-cell imaging to observe the resulting 
behavior caused by synthetic gene circuits[9]. However, peripheral 

systems required for liquid handling, temperature regulation, and 
imaging are large and expensive, limiting the potential impact of 
microfluidic technology. Here we detail a set of tools that may be 
used to lower the overall cost of establishing a microfluidic 
experimental system. We expect these tools will be empowering for 
researchers looking to establish fast, customizable workspaces and 
for researchers looking to run low-cost microfluidic studies in 
parallel with their existing experimental infrastructure. 

2. EXPERIMENTAL METHODS 
2.1 Additive Manufacturing 
As 3D printing technologies have become more widely adopted, 
3D printing systems have become less expensive and easier to use. 
For the design of the majority of the physical components for the 
mechanical pumps and miniaturized microscope developed, we 
have employed 3D printing wherever possible. This approach both 
allows for rapid prototyping of our designs and enables these design 
to be freely shared with other researchers for their own use. 

2.2 Live-cell Fluorescence Microscopy 
Living cells are loaded and sustained by pumping culture media 
through the microfluidic channels of our designed device (Figure 
1). In order to automate this process, we developed a custom fluidic 
pump and pressure sensor system that enable cell culturing. Our 
automated system provides well-regulated flow ensuring a constant 
stream of nutrients is delivered to the entrapped cell culture.  

 
Figure 1: The microfluidic device used for testing. E. coli 
bacteria are confined in traps adjacent to main flow channels. 
We are able to evaluate the efficacy of our flow-control system by 
entrapping synthetically engineered E. coli bacteria within our 
microfluidic channel. These cells were engineered to contain a 
genetic toggle switch[10], as well as other simple synthetically 
engineered gene regulatory networks. By examining fluorescent 
proteins under an epifluourescence microscope, we were able to 
regularly measure cellular response to influence media, while 
evaluating the pressure control profile of our liquid handling 
device. Crucially, by coupling multiple syringe pump actuators to 
a single microfluidic device, we were able to well-regulate the 
influent chemical compositions. This is important as it allowed us 
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to selectively induce populations of entrapped bacteria, modifying 
their epigenetic states using our fluidic handling system. 

Our system can sense and control the pressure of incoming fluid, 
the system temperature, and the optical states of cells within our 
bioreactor. These processes can be handled by software, allowing 
automated culturing and experimentation. 

3. RESULTS AND DISCUSSION 
3.1 Automating Synthetic Biology Testing 
The automated bioreactor system presented here offers a novel 
approach for experimentation with living cells that have been 
synthetically engineered. The separate subsystems developed here 
can also be more widely used outside of synthetic biology 
experimentation, to include many microfluidics research projects. 
For instance, the syringe pressure pumps developed here (Figure 2) 
allow for a low-cost and stable means of providing pressure driven 
flow for any microfluidic device. These pumps provide two modes 
of operation and can provide relatively high performance 
microfluidic flow control for a range of applications for a cost of 
approximately $110[11]. 

 
Figure 2: A) Syringe pressure pump designed for driving flow 
in microfluidic devices. B) Data collected shows our pressure 
pumps can accurately control pressure within a microfluidic 
device relative to a command over time. 
Additionally, the miniaturized epifluorescent microscope being 
developed (Figure 3) provides a means of measuring the 
fluorescent reporter response from synthetically engineered cells 
confined in a microfluidic chip. By integrating off-the-shelf optical 
components with a 3D-printed housing, we have been able to 
design and construct a low-cost epifluorescent microscope, capable 
of imaging the fluorescent response of the synthetically engineered 
E. coli bacteria we used for testing. 

 
Figure 3: A) Miniaturized microscope body and objective lens 
for epifluorescent microscopy. B) Interior of the body houses 
the optical components. 

3.2 Portable Microfluidic Bioreactor 
Experimentation was focused on extended duration tests to ensure 
cells can be sustained for prolonged periods of many days at a time. 
As the onboard cells here are genetically modified organisms 
(GMOs), the closed system also isolates these GMOs from the 
surrounding environment. This can allow for the use of 
synthetically engineered living systems outside of the laboratory, 

for example, as a field-deployed biosensor or for metabolic 
optimization. Additionally, the portability of this system could be 
used for educational purposes, allowing for demonstrations of 
synthetic circuits in real-time for students in classrooms without 
access to lab spaces. 

4. CONCLUSION 
Our low-cost, open-source microfluidic bioreactor allows scientists 
and engineers to culture and examine synthetically engineered 
living organisms at a fraction of the cost of the typical lab set-up. 
We expect our system to enable both systems and synthetic 
biologists by driving down the cost of experimentation while 
enabling customization and portability. We look forward to 
improving the automation and resiliency of our system and 
deploying it for more comprehensive experiments. 
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1. INTRODUCTION
Microfluidic devices provide researchers with numerous

advantages such as high throughput, increased sensitivity
and accuracy, lower cost, and reduced reaction time [13, 11,
6]. However, design, fabrication, and running a microfluidic
device are still heavily reliant on expertise [2, 1, 8]. Recent
studies suggest micro-milling can be a semi-automatic, inex-
pensive, and simple alternative to common fabrication meth-
ods [3]. Micro-milling does not require a clean-room, mask
aligner, spin-coater, and Plasma bonder, thus cutting down
the cost and time of fabrication significantly. Moreover,
through this protocol researchers can easily fabricate mi-
crofluidic devices in an automated fashion eschewing levels
of expertise required for typical fabrication methods, such as
photolithography, soft-lithography, and etching [14]. How-
ever, designing a microfluidic chip that meets a certain set
of requirements is still heavily dependent on a microfluidic
expert, several days of simulation, and numerous experi-
ments to reach the required performance. To address this,
studies have reported random automated design of microflu-
idic devices based on numerical simulations for micro-mixing
[12]. However, random design generation is heavily reliant
on time-consuming simulations carried out beforehand, and
is prone to error due to the accuracy limitations of the nu-
merical method. On the other hand, by using micro-milling
for ultra-fast and inexpensive fabrication of microfluidic de-
vices and Taguchi design of experiments for state-space ex-
ploration of all of the geometric parameters, we are able to
generate a database of geometries, flow rates, and flow prop-
erties required for a single primitive to carry out a specified
microfluidic task.
In this work, we report a modular automated design tool for
microfluidic devices. DAFD (Design Automation based on
Fluid Dynamics) enables researchers to design a microfluidic
chip component-by-component. DAFD will output geomet-
ric parameters (alongside with fluid and flow properties) that
can be incorporated into a standardized design description
of these microfluidic components [10], hence allowing the
design layouts to be automatically generated for the whole
chip using Fluigi [4] .

2. DAFD - DROPLET GENERATION
Droplet generation was chosen as the first candidate of

study due to its superior control over sample volume and
concentration (ideal for biological reactions), and the com-
plex interdependence between geometry and fluid dynamics.
The first step of characterizing a geometry for a given mi-

Figure 1: a. Geometric parameters of microfluidic cross-
junction droplet generation, including water inlet width, oil
inlet width, orifice length, orifice size, output channel width,
and channel depth. b. Cross-junction microfluidic droplet
generation. c. Droplets are counted and measured using
image processing. d. Changes in geometry and flow rates
results in altered droplet radius and generation rate.

crofluidic primitive (droplet generator, mixer. etc.) starts
with Taguchi design of experiments to minimize the number
of required geometrical variations to explore the state-space
[9]. Then each geometry will be tested for di↵erent fluid and
flow properties. Once the data is gathered, it will be fed to
an ANFIS (Adaptive Network-based Fuzzy Inference Sys-
tem) model to train a predictive model. Once trained, AN-
FIS is able to create predictive models based on experimen-
tal data through artificial intelligence and statistical analysis
[5]. Finally, its predictive accuracy will be verified experi-
mentally and fed to DAFD back-end as shown in Figure 2.
The cross-junction flow-focusing droplet generator was used
for the study due to its superior control over droplet size and
its geometry that can be fully defined with six parameters as
shown in Figure 1 [7]. For each parameter five di↵erent lev-
els were considered; having six parameters in total , without
Taguchi design of experiments, 15625 di↵erent geometries
would have to be tested. However, through Taguchi design
of experiments, this number will be reduced to 25. For each
geometry, several water and oil flow rates will be examined
to study their e↵ect on droplet size and generation rate, and
the data will be fed to DAFD database.
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Figure 2: Yellow: Fluigi workflow for automated design of microfluidic devices, interface with DAFD. Blue: DAFD algorithmic
approach for characterizing and modeling a microfluidic primitive into a database. Pink: Each design query will go through
DAFD database to find an exact geometry or approximation based on predictive model. Green: An example of design query
and construction rules for microfluidic cross-junction droplet generation. (*INT: Integer)

3. INTEGRATION WITH FLUIGI
DAFD lowers the barrier of entry into microfluidics by re-

ducing the amount of prior knowledge necessary to design
microfluidic devices. On the other hand, Fluigi as a new
paradigm for physical design of microfluidic devices, is an
automated CAD tool to generate the layout of the microflu-
idic device based on high-level description. Through the
Fluigi workflow, the tool will send design queries to DAFD
using the abstract Liquid Flow Relations (LFR) described
by the user to design a microfluidic device. DAFD, in turn,
will query its database for an exact geometry for the cor-
responding primitive; if one does not exist, it will use its
predictive model to approximate the geometry for the de-
scribed task as shown in Figure 2.

4. CONCLUSION AND FUTURE WORK
By considering the basic microfluidic primitives required

to carry out common biological protocols in a microfluidic
chip, such as droplet generators, micro-mixers, cell-traps,
and gradient generators, and fully characterizing them to
build a large enough database and an accurate predictive
model, DAFD will enable researchers to design a functional
microfluidic chip based on their needs without any prior mi-
crofluidic knowledge. We are also aiming to model the other
mentioned microfluidic primitives in the future.
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1. Introduction 
The JAK (Janus Kinase) and STAT (Signal 
Transducers and Activators of Transcription) 
families of proteins are a large group of signaling 
molecules that are involved in many important 
signaling pathways in cells. There are at least 3 
main types of JAK proteins and 6 different STATs 
and together, they are responsible for activating 
some of the most important cellular functions such 
as cell proliferation, differentiation, migration and 
apoptosis [1,2,3].  
The JAK2/STAT5 pathway (simplified and shown in 
Figure 1) is incredibly important and known to play 
a vital role in macrophage activation during the 
immune response [4], and cell differentiation [5]. 
However, despite its importance, it is not well 
understood.  

Figure 1: A simplified version of the JAK2/STAT5 
signaling pathway. This contains all the key elements 
necessary for STAT5 phosphorylation and 
transcription of the downstream proteins SOCS3 and 
CIS. Specifically, how CIS and SOCS3 work in the 
negative feedback loop is not well understood. This 
figure is from [6]. 

 
We focus on elucidating the JAK2/STAT5 signaling 
pathway through comparing model simulations 
against experimental results. The theory behind 
this is that a model that is able to most 
accurately match the experimental results must 
be the model that most closely resembles the 
system in cells. For this, we are expanding on the 
work of J. Bachmann et al. and their mathematical 
model of this pathway [6]. The model developed by 
J. Bachmann et al. was able to fit the experimental 
data they collected but they were unable to 
determine if each regulation they modeled was 
present in the true biological system. Indeed, they 
hypothesized that some of their negative feedback 
regulations were not actually present in the native 
reaction pathway and that their model could be 
further simplified. In this same vein, we 
hypothesized that we could simplify their 
mathematical model using Boolean Modeling 
and reduce the number of negative feedback 
regulations while accurately matching their 
experimental results. 
 

2. Discrete Modeling  
In discrete modeling, elements are only allowed to 
have discrete values. Interactions between 
elements in the model are described using a simple 
notation which is translated into a series of logical 
rules. Once the initial values have been set for each 
element in our model, our simulator is able to 
simulate the model by computing the next value of 
an element by only knowing it’s previous value and 
the previous values of the elements that interact 
with it. This is done until the model reaches steady 
state (i.e. no element’s value changes, a cycle is 
reached, or a specified number of time steps have 
finished).  
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In order to observe dynamic time-course data from 
these experiments, an asynchronous model must 
be simulated numerous times and the values of 
each element to be saved over the course of each 
run. In this way the elements’ levels over the 
number of trials can be summed and a dynamic 
graph can show the maximum expression of all 
trials normalized to 100% activity. 
 
 
 
 
 
 
 
 
 

3. Simulation 
We were able to create a baseline Boolean model 
based on the Jak2/Stat5 mathematical model. 
Once we have established a baseline Boolean 
model that matches the behavior of the experiment 
and mathematical model, our goal was to test which 
inhibitions are vital to the system, and which ones 
are redundant. We began systematically removing 
negative feedback regulation of SOCS3 and CIS on 
their upstream regulators and comparing the new 
model against the baseline. When the removal of a 
regulation compromised the accuracy of the model, 
it was ruled invalid and the next model was created 
 
 
 
 
 
 

4. Conclusion 
We set out to determine if the feedback regulation 
present in the JAK2/STAT5 signaling pathway 
could be simplified from a preliminary mathematical 
model [6]. We were able to identify 3 negative 

feedback regulations present in the mathematical 
model that were not necessary for the accuracy of 
the discrete model.  These regulations were 
redundant in nature for two different reasons: either 
they regulated the receptor that began the pathway 
(a feedback mechanism that is exceedingly rare 
and therefore not likely to be present in this system) 
or because there were two negative feedback 
regulations that were essentially identical (due to 
the fact that the negative regulators were sharing 
the same behavior). We can conclude that our 
Boolean model is a simpler and more elegant 
model that accurately represents the behavior of 
the JAK2/STAT5 signaling pathway.   
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Figure 2: Comparison between experimental results and our simulation’s results. In black on the left are the results 
for pStat5, pEpoR, pJak2, SOCS3, CIS, SOCS3mRNA, CISmRNA. On the right, in blue are the corresponding 
results produced by our model. 
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ABSTRACT
Cell-free expression systems have been used, since their incep-
tion, as test platforms to investigate biological phenomena. Today,
synthetic biologists use coupled transcription-translation (TX-TL)
cell-free systems as a quick, simple, and high-throughput method
to prototype biological parts and pathways. Here, we quantify the
di�erences in the biophysics of gene expression between the in vitro
and in vivo environments. Increases in the concentration of crowd-
ing agents in vitro, and the concentration of salts, increase overall
gene expression in vitro, while decreasing the proportional range of
expression between low- and high-translation rate constructs. We
relate this di�erence to the apparent temperature, � , and the e�ect
of crowding agents and salts on this thermodynamic parameter.
The di�erence in � between the in vivo and in vitro environments
presents a challenge for translating the performance of biological
parts and systems prototyped in vitro to in vivo applications.

KEYWORDS
Biophysical modeling, cell-free expression, macromolecular crowd-
ing
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1 INTRODUCTION
Cell-free expression systems (CFSs) are a powerful tool to character-
ize biological phenomena. By purifying the cellular gene expression
machinery, and combining amino acids, NTPs, and small-molecule
cofactors, the intracellular process of gene expression can be re-
capitulated. CFSs allow researchers the freedom of working with
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biological parts and machinery in an open system, making pertur-
bations to that system far simpler than if they were working with
a living cell.

As the �eld of synthetic biology has emerged, it has embraced the
use of TX-TL CFSs as a �exible platform which can be used to build
circuits, produce bioproducts, and sense pathogens [7, 10, 13]. By
bringing the time-to-experiment for testing new genetic parts down
to several days from as long as several weeks, TX-TL-based assays
can accelerate the design-build-test cycle, while greatly remediating
any issues of toxicity related to overexpression [6].

In particular, synthetic biologists have recently begun using TX-
TL as a molecular biology "breadboard" to prototype genetic parts,
circuits, and even entire pathways. Regulatory sequences, such as
promoters and ribosome binding sites (RBSs), have been prototyped
in vitro in both both E. coli and Bacillus subtilis-derived cell-free
systems [2, 8]. A variety of circuits, ranging from repressilators to
phage integrase circuits, have been tested in TX-TL systems as well
[1, 9]. Even pathways, such as those synthesizing valinomycin and
butanol, have been successfully prototyped in TX-TL [7, 14].

However, in vitro results may not directly correspond to in vivo
behavior. Here, we use a biophysical model of translation initia-
tion to demonstrate that the relative di�erences in gene expression
in di�erent contexts can be related to di�erences in the thermo-
dynamic � of the system they are tested in, and that tuning the
concentration of macromolecular crowding agents leads to changes
in � [11].

2 � IN VIVO AND IN VITRO
The rate of protein production of a construct is proportional to
the Gibbs free energy of translation initiation of that construct,
according to the following:

r = Ke�� � Gtotal (1)

Where K is a constant representing the e�ect of mRNA level,
reporter quantum yield, total 30S ribosomal subunit concentra-
tion, and initiation at alternative ribosome binding sites. �Gtotal
is calculated using a biophysical model of translation initiation
[4]. � inside the bacterial cell has previously been measured to be
approximately 0.45, or 1120 °C [4, 5, 11].

Figure 1 shows the �t of � to a dataset of 169 individually char-
acterized sequences [4]. We chose seven constructs, previously
observed to be well-predicted by RBS Calculator 2.0, to determine
the e�ects of macromolecular crowding on the rate of translation
initiation in vitro [4].
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Figure 1: � in vivo and in vitro. Fluorescence of 169 sequences
characterized in vivo vs. �Gtotal are shown on the left, in
gray. Sequences in black were chosen for further character-
ization in vitro. Fluorescence vs. �Gtotal in TX-TL is shown
on the right.

Figure 2: E�ect of crowders on ln K and � . Apparent � of
constructs tested in varying % PEG-8000 (red) and Ficoll400
(blue) are shown on the left. lnKof constructs tested in vary-
ing % PEG-8000 (red) and Ficoll400 (blue) are shown on the
right.

A cell-free expression system was prepared as described by [12].
5 uL reactions, with 2 nM plasmid DNA template, were incubated
at 29°C. Constructs expressing mRFP1 from the J23100 promoter,
with designed RBSs, were screened [4]. The steady-state mRFP1
�uorescence level for each treatment, a measure of the total �uores-
cent protein production, was used to quantify translation initiation
rate.

Initial screens of these same constructs in TX-TL showed that
the value of � in vitro di�ers signi�cantly from the value obtained
in vivo. Despite the fact that the in vitro environment is 30-fold
more dilute than the cellular environment, the apparent � is lower.

3 EFFECT OF CROWDERS ON PARAMETERS
OF GENE EXPRESSION

Macromolecular crowding is known to a�ect the equilibria of bio-
chemical reactions and interactions due to excluded volume e�ects
[3]. To examine the role that macromolecular crowding has on
the translation rate and � of our selected constructs, we added
di�ering amounts of two neutral crowding agents, PEG-8000 and
Ficoll 400, to TX-TL. Examining K and � separately allows the e�ect

of crowding on transcription and translation, respectively, to be
determined

Adding either crowder resulted in increases in gene expression
for all constructs tested. As shown in Figure 2, � consistently de-
creased with increased % (g/100mL) of crowder added, while K in-
creased. The e�ects of both crowders on � , and therefore translation
initiation, were similar. PEG-8000, however, increased transcription
to a much greater degree than did Ficoll400.

4 CONCLUSIONS
Although the behavior of genetic parts in vitro is qualitatively simi-
lar to their behavior in vivo, the thermodynamic � varies between
the two systems. Changing the degree of crowding in TX-TL further
decreases beta. Although TX-TL is a useful platform to prototype
genetic parts and systems intended to be used in vivo, further stud-
ies are needed to determine how in vitro performance translates in
vivo.

REFERENCES
[1] Georgios Artavanis, Victoria Hsiao, Clarmyra A Hayes, and Richard M Murray.

2016. The role of single occupancy e�ects on integrase dynamics in a cell-free
system. bioRxiv (2016), 059675.

[2] James Chappell, Kirsten Jensen, and Paul S. Freemont. 2013. Validation of an
entirely in vitro approach for rapid prototyping of DNA regulatory elements
for synthetic biology. Nucleic Acids Research 41, 5 (2013), 3471–3481. https:
//doi.org/10.1093/nar/gkt052

[3] R John Ellis. 2001. Macromolecular crowding: obvious but underappreciated.
Trends in biochemical sciences 26, 10 (2001), 597–604.

[4] Amin Espah Borujeni, Anirudh S. Channarasappa, and Howard M. Salis. 2014.
Translation rate is controlled by coupled trade-o�s between site accessibility,
selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids
Research 42, 4 (2014), 2646–2659. https://doi.org/10.1093/nar/gkt1139

[5] Iman Farasat, Manish Kushwaha, Jason Collens, Michael Easterbrook, Matthew
Guido, and Howard M Salis. 2014. E�cient search, mapping, and optimization
of multi-protein genetic systems in diverse bacteria. Molecular systems biology
10 (2014), 731. https://doi.org/10.15252/msb.20134955

[6] Jonathan Garamella, Ryan Marshall, Mark Rustad, and Vincent Noireaux. 2016.
TheAll E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS
Synthetic Biology 5, 4 (2016), 344–355. https://doi.org/10.1021/acssynbio.5b00296

[7] Ashty S. Karim and Michael C. Jewett. 2016. A cell-free framework for rapid
biosynthetic pathway prototyping and enzyme discovery. Metabolic Engineering
36 (2016), 116–126. https://doi.org/10.1016/j.ymben.2016.03.002

[8] Richard Kelwick, Alexander J. Webb, James T. MacDonald, and Paul S. Freemont.
2016. Development of a Bacillus subtilis cell-free transcription-translation system
for prototyping regulatory elements. Metabolic Engineering 38 (2016), 370–381.
https://doi.org/10.1016/j.ymben.2016.09.008

[9] Henrike Niederholtmeyer, Zachary Z. Sun, Yutaka Hori, Enoch Yeung, Amanda
Verpoorte, Richard M. Murray, and Sebastian J. Maerkl. 2015. Rapid cell-free
forward engineering of novel genetic ring oscillators. eLife 4, OCTOBER2015
(2015). https://doi.org/10.7554/eLife.09771

[10] Keith Pardee, Alexander A. Green, Tom Ferrante, D. Ewen Cameron, Ajay Da-
leykeyser, Peng Yin, and James J. Collins. 2014. Paper-based synthetic gene
networks. Cell 159, 4 (2014), 940–954. https://doi.org/10.1016/j.cell.2014.10.004

[11] Howard M Salis, Ethan A Mirsky, and Christopher A Voigt. 2009. Automated
design of synthetic ribosome binding sites to control protein expression. Nature
biotechnology 27, 10 (2009), 946–50. https://doi.org/10.1038/nbt.1568

[12] Zachary Z Sun, Clarmyra A Hayes, Jonghyeon Shin, Filippo Caschera, Richard M
Murray, and Vincent Noireaux. 2013. Protocols for implementing an Escherichia
coli based TX-TL cell-free expression system for synthetic biology. Journal of
visualized experiments : JoVE (2013), e50762. https://doi.org/10.3791/50762

[13] Melissa K. Takahashi, Clarmyra a. Hayes, James Chappell, Zachary Z. Sun,
Richard M. Murray, Vincent Noireaux, and Julius B. Lucks. 2015. Characterizing
and prototyping genetic networks with cell-free transcriptionâĂŞtranslation
reactions. Methods (2015). https://doi.org/10.1016/j.ymeth.2015.05.020

[14] Ti�any Zhou. 2016. Prototyping a valinomycin biosynthesis pathway within a
cell-free transcription-translation (TX-TL) system. bioRxiv (2016), 091520.

71

https://doi.org/10.1093/nar/gkt052
https://doi.org/10.1093/nar/gkt052
https://doi.org/10.1093/nar/gkt1139
https://doi.org/10.15252/msb.20134955
https://doi.org/10.1021/acssynbio.5b00296
https://doi.org/10.1016/j.ymben.2016.03.002
https://doi.org/10.1016/j.ymben.2016.09.008
https://doi.org/10.7554/eLife.09771
https://doi.org/10.1016/j.cell.2014.10.004
https://doi.org/10.1038/nbt.1568
https://doi.org/10.3791/50762
https://doi.org/10.1016/j.ymeth.2015.05.020


Fluigi Cloud

A Cloud CAD Platform for Microfluidics

Kestutis Subacius1, Priya Kapadia1, Shane McCormack1, Anish Asthana1, Radhakrishna Sanka1, and Douglas Densmore1

1Department of Electrical and Computer Engineering, Boston University, Boston, MA

{kestas,priyak,aonanam,asthana,sanka,dougd}@bu.edu

1. INTRODUCTION
With microfluidic large scale integration [Thorsen et al.

2002] and the emergence of many new synthetic biology
technologies, there is an ever increasing benefit in using com-
puter automated design (CAD) tools for scaling designs to
larger and more complex applications. In 2015 Xin Han et al.
demonstrated the e↵ective delivery of CRISPR-Cas9 [Cong
et al. 2013] to cells, which are normally di�cult to transfect,
using a microfluidic membrane device [Han et al. 2015]. To
help researchers and engineers realize microfluidics for new
synthetic biology applications, it is pertinent that they have
access to CAD tools to facilitate the design process. Fluigi
Cloud is an online platform designed with this goal in mind.
It provides a suite of software tools for microfluidic CAD.
This work describes some applications of Fluigi Cloud and
the role it plays in the greater ecosystem of microfluidic de-
sign and synthetic biology.

Figure 1: Components in the first release of Fluigi Cloud

As shown in Figure 1, the first release of Fluigi Cloud is
made up of two components: Neptune and the Peripheral
Manager. The application Neptune provides an environ-
ment for researchers to develop designs within the Fluigi
Software Workflow [Huang 2015]. The Peripheral Manager
provides an interface to control microfluidic hardware and
experiments. This framework was designed with the goal of
scalability in mind, with the software architecture built to
incorporate future microfluidic CAD tools.

2. ARCHITECTURE
Fluigi Cloud is built to support three main functions crit-

ical to a successful CAD workflow:

1. A database and file system for microfluidics to be be
designed on the Cloud.

2. A robust system to execute CAD jobs on the Cloud.

3. An interface that allows the microfluidic experiments
to be controlled from the Cloud.

This architecture is outlined in Figure 2. Fluigi Cloud
was developed within a NodeJS [Nod 2017] Express frame-
work [Exp 2017]. The application is hosted on an AWS
EC2 instance, and interfaces with the AWS S3 static file
system [AWS 2017] for object storage. A MongoLab hosted
database is used for data model storage in MongoDB [Mon
2017]. CAD jobs are executed on the EC2 instance, with the
system built to support a modular and expandable number
of new software tools. Currently, Fluigi Cloud supports the
translation of LFR files to MINT files, and the compilation
of MINT files into microfluidic schematics. Fluigi Cloud in-
terfaces with a local application to control microfluidics that
were created in the Cloud environment.

The rest of the abstract will discuss the two applications
supported under Fluigi Cloud’s first release: Neptune and
the Peripheral Manager.

Figure 2: Architecture of Fluigi Cloud

3. NEPTUNE
Neptune is an application designed to incorporate the end-

to-end microfluidic design procedure under the Fluigi Work-
flow. With Neptune, users can describe their microfluidic
design idea in a high level specification called LFR (liquid
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Figure 3: Peripheral Manager

flow relations), or in a more descriptive MINT (microfluidic
netlist), specification [Sanka et al. 2016]. Neptune provides
an environment where these descriptions can be written and
then compiled into realizable design schematics with Fluigi.
Hence, Neptune is the main CAD tool that generates mi-
crofluidic designs from high level descriptions. These design
schematics can then be fabricated with photolithography, or
with the MakerFluidics protocol [Silva et al. 2015].

4. PERIPHERAL MANAGER
The Peripheral Manager is the application that provides a

link between Fluigi Cloud and the physical microfluidic de-
vice. This application is run as a server from the local client,
and it was built to support connection from external appli-
cation, (such as Fluigi Cloud) and to support connection
to external devices (such as microcontrollers used to control
microfluidic experiments). This application is developed in
a NodeJS framework, and can be used both independently
of and in conjunction with Fluigi Cloud. The function of
the Peripheral Manager is illustrated in Figure 3.

5. FLUIGI CLOUD IN THE GREATER CON-
TEXT OF SYNTHETIC BIOLOGY

The greater vision of Fluigi Cloud is to provide a coher-
ent and seamless suite of software tools to make microfluidic
design and research easier. As Figure 4 illustrates, the goal
of Fluigi Cloud is to incorporate all aspects of microfluidic
design. This includes computer automated design tools to
push the boundaries of design complexity, enable access to
automated and low-cost fabrication protocols that can be
adopted by many labs, and finally to provide control soft-
ware to allow experiments to be run directly from the Cloud.
This all places Fluigi Cloud as an ideal ecosystem for re-
searchers and engineers to not only design novel devices,
but also to collaborate and share their designs in a unified
space. Future releases of Fluigi Cloud will aim to create this
space, always with the goal of enabling synthetic biologists
to push the frontier of what is possible in Microfluidics.
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ABSTRACT 
Given recent developments in the graph-based approaches, used 
in synthetic and systems biology, and the variety types of the 
graphs employed by those methods, it is becoming more obvious 
that the requirements for developing a comprehensive graph 
library are being met. This paper focuses on providing a new 
graph library using a novel flexible datamodel for full 
representation of the biological systems with the support of their 
functional and topological properties. 

CCS CONCEPTS 
• Software and its engineering → Software libraries and 
repositories; Software design engineering; Software 
architectures. • Applied computing → Biological networks; 
Bioinformatics; Systems biology. 

KEYWORDS 
Design automation; biological systems; graph library; three-tier 
architecture, flexible datamodel. 

1. INTRODUCTION 
Beyond the production of a huge amount of biological data, there 
is a real challenge to represent and use the data, as they are given, 
in computer algorithms and tools developed for analysis and 
design-automation of the biological systems. Moreover, due to the 
complexity of relationships and the peculiarities of the data, the 
interpretation of most of biological systems is often difficult. 
However, graphs are the well-known mathematical abstractions 
which can be used to get insights into studying the topological 
properties of the biological systems and the functioning of them.  
Given both pure and hybrid graph-based approaches currently, 
present fascinating challenges with respect to the functional and 
topological properties of the biological systems, we decided to 
provide and develop a new well-structured and procedurally-rich 
graph library. 
Although some of the graph libraries, e.g., QuickGraph [1] and 
boost [2] provide generic graph data structures and algorithms for 
the different programming languages, it cannot be used for the 
efficient and flexible representation of the non-typical graphs, 
including bipartite graphs (Petri net graphs) [3], signed graphs [4], 
and hypergraphs (AND/OR graphs) [5][6]. Indeed, the computer 
algorithms suffer from the lack of a single comprehensive library 
to consider (non-)typical types of graphs. 
Furthermore, in the NoSQL databases such as Neo4j, users face a 
fixed graph type,  i.e., a normal OR graph, which must be changed 
by them before exploiting. By contrast, the relational database 
gives the program developers access to the flexible types of 

the  graphs. In other words,  using the graphs of any different types, 
not using an inflexible type, helps the users  to efficiently solve a 
range of problems, especially in the field of synthetic and systems 
biology. For example, in Neo4j, due to the lack of some specific 
graph types like the AND/OR  graphs, the users will be pushed for 
superficial implementation of these types of the graphs.  Therefore, 
because of these shortcomings, we proposed a novel flexible 
datamodel through  which access to the best graph-based solution 
of a variety of the problems in different  biological systems will be 
possible.  
These are precisely the motivations behind this work in which we 
give our solution (based on a novel flexible datamodel) to the 
aforementioned shortage of the conventional graph libraries, and 
indeed, it does, as we shall see in the following. 

2. MATERIAL AND METHOD 
2.1 Architecture 
This section deals exclusively with architecture principles of the 
proposed datamodel of our graph library. 
Due to the several reasons such as central security, easy access to 
the data, scalability and flexibility, our solution offered for the 
problem of designing a single comprehensive graph library is 
based on the three-tier architecture (Figure 1). This architecture is 
a data-intensive client-server by which an  application is broken 
down into three logical functional-separate tiers (layers). Each of 
these has well-defined  interfaces.  However, to design and develop 
an efficient library, we focused on the only data and business tiers 
for the implementation and the future developments. 

2.1.1 Data Tier 
Data-tier of the architecture (of the proposed library) is one of the 
complete layers designed to store a variety of graph types. The 
design, performed with the optimal methodologies, has been 
resulted in meaningfulness during the data storage. Accordingly, 
no extra software is needed to resolve types of the recording data. 
As a simple example, assume that Rx : Ci + Cj ⟶ Ct and 
Ry : Cj ⟶ Ct are two bioreactions of a given biochemical 
network. Figure 2A shows the hypergraph corresponding to these 
two bioreactions, and Figure 2B shows how the corresponding 
data are stored and managed in our proposed datamodel. 
 

Presentation-Tier
(Client)

Business-Tier
(Application Server)

Data-Tier
(Data Server)

 
Figure 1. Flow diagram of the 3-Tiered client-server architecture 
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Figure 2. Overview of the datamodel of our proposed library: (A) An exemplary hypergraph, and (B) The original format of datamodel, 

plus the completed tables (entities) by considering the properties of the hypergraph. 
 
Using the proposed datamodel, each type of the graphs can be 
saved in computer programs for the next utilizations. The steps 
include the following: 

x Name and type of a given graph 𝐺 must be specified in 
the  “ Graph ”  table. 
o Note that storing type of a graph 𝐺 is done through the 

“ Type” table. 
x Vertices 𝑣௜ and edges 𝑒௜ of 𝐺 will be detailed in 

the  “ Node ”  and  “ Edge”  tables, respectively. 
o The “ Type” table is also used to put the type of 𝑣௜ and 

𝑒௜ in storage space. For example, using this table and 
assignment of two (or more) types of  𝑣௜, it will be able 
to represent bipartite (multipartite) graphs in the 
computer. The key attributes of edges  𝑒௜ such as 
(un)directed, (un)weighted and (un)signed must be also 
kept into this table. 

o If 𝑣௜ and 𝑒௜ of the graph were to be labeled, the “ Value ”  
table is used to keep up labels. Since the labels can be of 
various data types including integer, string and so forth, 
this table helps us to consider them without any 
concern. Additionally, if either 𝑣௜ or 𝑒௜ (or both) has no 
label, this table occupy less (no) memory space. 

o The initial/terminal vertices from/to which an edge 
start/point, specifies in the “ NodeEdge” table. 

x Data of the “ GraphEdge” table includes the information 
combined from the graphs and their corresponding edges. 
Actually, this table denotes the edges 𝑒௜ which are in 
possession of a graph G. 

x If there are any special types of the relations, such as the 
“ AND” relations (AND-edges), between the edges of 
graph 𝐺, they must be stated in the "EdgeRelation" table. 

x The contents stored in the “ Type” table will be categorized 
and demonstrated in the “ GroupType” table. 

2.1.2 Business-Tier 
The business-tier guarantees accuracy and correctness of the 
graph properties inserted, displayed and updated in datamodel. 
Additionally, whenever a new graph type is to be needed, it must 
be added through this tier. 

3. CONCLUSION 
With abundant information on biological systems such as gene 
regulatory networks, metabolic pathways, and signal transduction 
networks, there is pressing need to create of a comprehensive 
library to describe biological systems and processes. Therefore, 
we proposed a flexible datamodel (of a graph library) to feasibly 
represent the non-typical graphs as the typical ones. 
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1. INTRODUCTION
Synthetic biologists typically create new genetic circuits

in informal, iterative specify-design-build-test cycles. Cur-
rently, the field relies on ad hoc methods, sometimes aided
by simulations and mathematical modeling, though recent
advances have led to the development of software tools ca-
pable of computationally designing functional genetic cir-
cuits using Boolean logic [5]. Biologists are, however, of-
ten concerned with how their systems behave spatially and
temporally, while most existing tools are primarily focused
on the steady-state function of the circuit and fail to cap-
ture these types of performance metrics. The ability to for-
mally describe genetic circuit behavior over time with per-
formance parameters represents a powerful move towards
building more complex and robust genetic circuits.

In addition to providing performance specifications for de-
sired genetic circuits, synthetic biologists can utilize ideas
from systems engineering, an interdisciplinary field that fo-
cuses on building and maintaining complex engineering sys-
tems over their entire life cycles, to produce more robust
genetic circuits. Applying standards and core concepts of
related sub-fields such as performance engineering and relia-
bility engineering is a promising way to advance synthetic bi-
ology’s potential applications in research areas such as stem
cell research, cellular medicine, and cellular environmental
monitoring and sensing.

To address the need for more expressive specifications and
engineering methods in synthetic biology, we have devel-
oped Phoenix, a Genetic Systems Engineering framework
that incorporates the fundamentals of systems engineering
and formal methods into the specify-design-build-test cy-
cle of bio-design automation (BDA). With Phoenix, biol-
ogists can create formal, performance-bound specifications
for complex biological systems like genetic circuits, and run
finite-time simulations for modular design components to
identify genetic circuits with high likelihoods of satisfying
the desired specification. Phoenix seamlessly connects exist-
ing and novel BDA tools to create a closed-loop, algorithm-
driven design workflow for a possible solution to a complete
genetic circuit specify-design-build-test cycle where the only
inputs are design specifications and collected data and the
only outputs are DNA assembly and genetic circuit test-
ing instructions. The Phoenix workflow is currently being
experimentally validated on some classic synthetic biology
model systems including several inverter cascades and a ge-
netic toggle switch.

2. WORKFLOW
Phoenix can be broken down into several steps corre-

sponding to the specify, design, build, and test paradigms of
BDA. Figure 1 shows a visual representation of how a user
would navigate this workflow, and each step is described in
more detail in the following subsections.

2.1 Specify
During the specification step, a user can provide a per-

formance specification using signal temporal logic (STL) [4].
STL provides more functionality than previous Boolean
methodologies in that it adds the ability to create speci-
fications that include parameters intrinsic to genetic com-
ponents, interactions with complex environments and other
components, and timing of interactions and events. For
users not versed in the syntax and semantics of temporal
logics, Phoenix includes a canvas that can be used to graph-
ically draw traces representing the desired behavior of the
circuit. These traces are then converted into an STL formula
using a temporal logic inference (TLI) [2] technique known
as GridTLI.

In addition to the performance specifications, a user can
upload structural constraint information specified using Eu-
gene (a rule based design language) [6]. These structural
specifications are checked against known design rule con-
straints using grammars to check the validity of the struc-
tural design.

2.2 Design
During the design phase, Phoenix builds a module tree

from the specification to break the structure of each ge-
netic module down into the abstract DNA components [7]
required to build the genetic system. It then pulls from a
library of genetic parts, such as SynBioHub (formerly the
SBOL Stack [3]), and assigns these parts to the DNA com-
ponents in the tree to generate potential candidate circuits.

2.3 Build
In the build stage, A detailed list of components (supple-

mented with temporary testing components) is generated
along with instructions required to assemble the parts (us-
ing Raven [1]). These testing modules function like ‘unit
tests’ for the genetic module being built. The characterized
modules are used to build genetic regulatory network models
with assigned DNA components using parameter estimation
and in silico simulation, and the best ones are selected for
synthesis.
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Figure 1: The Phoenix workflow. (a) A user begins on the specification page where an STL formula can be input using a
text editor. Alternatively, the user can draw the desired behavior of the circuit as a collection of traces and an STL formula
is inferred using GridTLI. Once a formula is provided, a user can additionally supply structural constraints as well as a parts
library to be used in the design step. (b) During design, the specification is broken down into “expressors” and “expressees,”
and parts are selected from the library to fill these roles. (c) Next, several candidate circuit designs are generated and their
assembly instructions are generated using Raven. These circuits are then simulated to verify that they produce the desired
behavior. (d) The best circuits are built in vivo, and experimental results for the synthesized circuits are tested against the
specification to determine the robustness of each circuit. This information is fed back into the specification step to improve
the ability to engineer better circuits in the future.

2.4 Test
Using the assembly instructions, the circuits can be syn-

thesized in vivo and experimental data can be gathered on
their behavior. After post-processing the data, the result-
ing time series data can be verified against the performance
specification of the desired genetic system to determine the
robustness of each engineered genetic circuit.

3. DISCUSSION
The Phoenix workflow is being applied to the develop-

ment of inverter cascades and a genetic toggle switch. In
each case, an STL formula has been derived from time se-
ries data describing the behavior of the desired circuit, and a
library of inverter modules is being constructed and queried
to construct potential cascades and toggle switches. The
circuit models whose simulation traces best match the STL
specifications will be synthesized in vivo and the resulting
experimental data will be verified against each STL formula.

There are various tools that cover di↵erent aspects of the
specify-design-build-test cycle of BDA. In most cases, each
tool focuses on a very specific task and solves a very specific
subproblem. To ensure reliable performance throughout the
entire life cycle of a system, it is important to have an inter-
active and hierarchical tool that guides users with detailed
instructions throughout the BDA process. Phoenix is de-
signed to ensure that functional, performance, and struc-
tural specifications of a genetic system are well-defined, re-
producible, and reliable. By capturing essential properties of
engineered genetic circuits, Phoenix is able to provide syn-
thetic biologists with an automated way to design complex,
dynamic genetic circuits.
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ABSTRACT
In this work, a genome-scale metabolic model of Synechococcus
sp. PCC 7002 which utilizes �ux balance analysis across multiple
layers is analyzed to observe �ux response between 23 growth con-
ditions. This is achieved by setting reactions involved in biomass
accumulation and energy production as objectives for bi-level lin-
ear optimization, thus serving to improve the characterization of
mechanisms underlying these processes in photoautotrophic micro-
algae. Additionally, the incorporation of statistical techniques such
as k-means clustering and principal component analysis (PCA)
contribute to reducing dimensionality and inferring latent patterns.
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1 INTRODUCTION
Metabolic modelling can provide an intuitive way of monitoring the
amount of change in essential biological pathways; e.g. reactions in-
volved in cellular growth and repair, energy production, transport,
etc. Genome-scale metabolic models (GSMMs) can be used to im-
prove prediction of phenotypic outcomes through supplementing
linear constraints for conducting �ux balance analysis (FBA) with
external data from multi-omic studies. However, this undertaking
is often challenging owing to the persistent challenges of integrat-
ing multiple disparate data types [9]. The application of statistics
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and data mining can help to inform the inter-connectivity of these
datasets when they are combined to glean meaningful informa-
tion. Synechococcus sp. PCC 7002 is a fast-growing cyanobacterium
which �ourishes in both freshwater and marine environments, ow-
ing to its ability to tolerate high light intensity and a wide range of
salinities. Harnessing the properties of cyanobacteria has become
an imperative goal in recent years, owing to its potential for pro-
ducing renewable biofuels [4]. Here, we evaluate the e�ciency of
Synechococcus sp. PCC 7002 as a chassis for biofuel production over
various growth conditions, with the aim of optimizing biomass and
energy production during photosynthesis.
2 METHODS
We begin by calculating �ux under phototrophic growth in a model
of Synechococcus sp. PCC 7002 [4] using multi-omics �ux balance
analysis (FBA) [1] to obtain condition-speci�c �ux pro�les. Tran-
scriptomic data was acquired in the form of RNA sequencing reads
from a series of studies previously conducted by Ludwig and Bryant
[6–8]. These data are loaded into the model using METRADE to
map gene expression data to a space where each metabolic pro�le
is associated with a di�erent growth condition [2]. Normalised
�ux distributions are calculated using three pairs of objectives: (i)
Biomass and ATP maintenance (ii) Biomass and Photosystem I,
and (iii) Biomass and Photosystem II. The structure for bi-level
linear optimization is given in (1), where FBA is carried out using
the COBRA Toolbox in MATLAB. The f and � Boolean vectors
weight objectives for FBA, while the �min and �max vectors rep-
resent lower- and upper-limits for �ux rates. The product of the
stoichiometric matrix of all metabolites and reactions (S) and the
vector of �ux rates for all reactions (v) is 0 as rates of metabolite
consumption and production remain constant.

max �

|
�

such that max f

|
�, S� = 0,

�

min
�(�)  �  �

max
�(�),

(1)

In (2), � represents a vector of gene set expression values of the
reactions associated with the �uxes in � , which are mapped to a
coe�cient for the lower- and upper-limits of the corresponding
reaction by function �, de�ned as:

�(�) = [1 + � |lo�(�)|]sgn(��1) . (2)

PCA was conducted using the FactoMineR package in R [5] (pic-
tured in 2) and produces a scree plot of percentage contributions
to variance in the �rst �ve dimensions, as well an individual fac-
tor map where growth conditions are described by reaction �uxes
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Figure 1: Flux distributions for (i) Biomass and ATPmaintenance (ii) Biomass
and Photosystem I and (ii) Biomass and Photosystem II, recorded across
growth conditions 1-24.

(quantitative variables) for each pair of objectives. Clustering is
performed with the function k-means in MATLAB, using the num-
ber of clusters which returns the highest silhouette values for the
majority of points (k=6).

3 RESULTS AND DISCUSSION
By prioritising di�erent pairs of objectives during FBA, the mecha-
nisms underlying each pathway become more evident. When ATP
maintenance is set as the secondary objective (Fig 1), the highest
�uxes occur in heat shock and growth-limiting conditions, illustrat-
ing the importance of this reaction in maintaining cellular function
when growth rate or energy transfer through the photosystems is
low. Absence of light and oxygen are shown to lead to a signi�cant
decrease in growth, owing to lower generation of ATP and NADPH
without photoautotrophic growth; nutrient (particularly phosphate)
limitation also results in low biomass �ux, compared to the control.
The tolerance of Synechococcus sp. PCC 7002 for high light intensity
is evident from high �ux for all three objective pairs through the
biomass pathway. For the high salinity condition, �uxes through
biomass and photosystem I are high for all objective pairs, but �ux
is only maintained in the low salinity condition for the reaction set
as the secondary objective �. When set as objective �, �ux through
photosystem II for the low salinity condition is much higher than
the high salinity condition.

Principal components analysis (PCA) was carried out across the
�ux distributions generated for all objective pairs to identify the
conditions and/or reactions responsible for the most variance in the
datasets. Fig 2 displays a scree plot with the percentage of variance
explained by the �rst dimensions and also an individual factor map,
which displays the principal component scores of 24 individuals
(simulated conditions) described by 742 variables (reactions) on the
�rst two dimensions. For all three objective pairs, more than 70% of
the variance can be explained by just two dimensions i.e. two linear
combinations of all �uxes (2). Low oxygen, high light intensity, high
salt, and lower temperature give the highest scores for the �rst di-
mension; these conditions also yield the highest �uxes in 1 and are
in concordance with experimental �ndings [3, 7, 10]. For the second
dimension, the highest score is given by low salt, mixotrophic and
phosphate-limitation conditions for the ATP objective. k-means
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Figure 2: Percentage contribution of the �rst �ve dimensions to variance, in-
dividual factormap displaying principal component scores for 24 individuals
(conditions) described by 742 variables (�uxes) on the �rst two principal com-
ponents and k-means clustering performed with six clusters.

also re�ects the �ux distributions in showing clear di�erentiation
between conditions. In accordance with their biomass �uxes, high
light intensity and phosphate limitation are isolated from all other
conditions. The grouping of mixotrophic and low salt conditions is
indicative of their lack of �ux through the biomass reaction. Other
conditions which are detrimental for growth form two separate
clusters- 1, 9, 10 and 2, 11, 13, 17. In the �rst group of conditions,
it can be noted that some growth is maintained through biomass
synthesis, whereas in the second, there is higher �ux through the
photoexcitation reactions for photosynthesis, potentially with re-
liance on the ATP maintenance pathway to drive this process.

4 CONCLUSIONS
The use of a condition-speci�c metabolic model, which incorpo-
rates gene expression data and assesses multiple objectives, allows
for prediction of signi�cant metabolic patterns and phenotypic out-
comes arising as a result of adaptation to �uctuating environmental
conditions. In addition to this, statistical techniques such as PCA
and clustering introduce another layer of analysis for uncovering
latent patterns by re-organizing data on the basis of shared charac-
teristics, therefore providing further insight into the maintenance
of metabolic e�ciency during phototrophic growth.
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1 INTRODUCTION 
Synthetic biology is an emerging discipline that adopts an 

engineering approach to biological systems. We are interested in 
engineering complex phenotypes, such as enhanced disease or 
stress responses. Using a systems biology and control engineering 
approach, this project models the stress response in the plant 
Arabidopsis so that we can engineer more resilient plants by 
controlling the expression of transcription factors (TFs). This is 
the same strategy used by pathogens, whereby both fungi and 
bacteria can secrete effectors that manipulate TFs through 
interactions with key proteins that results in the downregulation of 
the plants immune response that subsequently undermines the 
defence system [1]. In addition, our network optimization 
approach is applicable to other scenarios, given appropriate inputs 
in the form of time series data and an optimization strategy.  

 Engineering the plant stress response 
     To genetically engineer a single gene in crops may confer a 
reduction in biotic stresses known as quantitative resistance but 
this is unlikely to prevent disease altogether [2]. However, if the 
gene in question is a TF, its manipulation can result in the 
differential expression of all the target genes it regulates, thus 
giving a wider reach than is possible by modifying non-TF genes 
[3]. Additionally, if the engineered TF targets other TFs, further 
effects can be seen at the downstream levels. Transcriptional 
reprogramming is a common feature in both biotic (e.g. pathogen 
infection), and abiotic stresses, (e.g. drought, high light and 
senescence) [4][5]. It is a change in gene expression of large 
numbers of genes, compared to the usual state of the plant and is 
carried out by TFs. 
     The choice of genes whose expressions need to be optimised is 
done based on knock-out and overexpression studies. These 
determine whether a gene gives a positive phenotype (in the case 
of infection, this means increased resistance), a negative 
phenotype (decreased resistance) or wildtype (no difference). 
Optimisation to a set point needs to be achieved with minimum 
amount of modifications and impact to the rest of the network 
other than pertinent nodes.  

2 RESULTS  

2.1 Network Inference 
    The modelling component of this project consists of inferring 
the regulatory network between Arabidopsis TFs which are 

responsible for transcriptional reprogramming following a 
particular stress. Several of the best-performing network inference 
algorithms [6] (GENIE3 [7], Inferelator [8], GRENITS [9], 
TIGRESS [10], CSI [11]) were used to infer the structure of 
Arabidopsis TF networks subject to infection with Botrytis 
cinerea or Pseudomonas syringae pathogens, senescence, drought 
or high light, using time series transcriptome data taken from 
Arabidopsis leaves. The resulting network models from these 
algorithms are ranked using several methods, such as the use of 
yeast-1-hybrid data, ChIP-seq (chromatin immunoprecipitation 
with sequencing) data, and knockout mutant transcriptome data 
combined with mathematical approaches in using Bayesian 
Information Criterion (BIC) score based on marginal likelihoods 
derived from the fitting of Gaussian processes to the data. From 
the different methods of ranking these models, we conclude that 
no one algorithm yields the best performance. Nonetheless, the 
performance of the consensus model is robust and consistently 
good, matching the findings of [6] and [12]. Therefore, this is our 
model of choice, with ChIP-seq and yeast-1-hybrid data included 
as prior information to construct a high confidence TF network for 
each stress response. 

2.2 Network modelling and re-wiring 
Using the consensus model obtained above, we turn our focus 

on enhancing the defence response to stress induced by Botrytis 
cinerea and Pseudomonas syringae pathogens, through different 
re-wiring simulation scenarios that will be used to inform our 
experimental set-up. The size of the network is first reduced by 
thresholding to remove edges and looking at subnetworks 
containing genes with phenotypes of interest. 

The reduced models are then parameterised with a linear 
Ordinary Differential Equation (ODE) system for simulation 
purposes using system identification techniques [13][14]. Typical 
equations of the kind present in our modelling are shown below. 
Using nodes N1 and N2 as examples, Eqn. 1 shows the ODEs of 
the two nodes without re-wiring, while Eqn. 2 shows the ODE 
when node N1 is re-wired to include the incoming nodes of N2.  

!"#
!$ = &#'# +	&*'* + +# −	-#"#	
!"*
!$ = 	θ/'0 +	&1'2 + +* −	-*"*																																(1) 

       
!"#
!$ = &#'# +	&*'* + &/'0 +	&1'2 + +# −	-#"#				(2)	
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where '7 denote the gene expression of a regulator, &7 represents 
parameters describing the strength and type (inhibitory or 
activating) of regulation, +7 captures the unknown/missing 
regulation and -7 represent the degradation rates. This way of re-
wiring is the simplest type that can be implemented 
experimentally as it involves the transformation of the wildtype 
plant with a plasmid containing the TF of N1 under the control of 
the promoter from N2. 
     Modelling of one such Arabidopsis subnetwork formed of 9 
TFs is pictured below.  

(a)

(b) 
Figure 1. Modelling a subnetwork of TFs during the Arabidopsis 
stress response to Botrytis. (a) The inferred consensus network. 
(b) Simulations of our ODE model (black) fitted to actual gene 
expression data (blue). 
 
     All possible re-wirings are simulated, and for each one, the 
difference between the observed data and the desired gene 
expression of the network is calculated. The re-wirings that result 
in genes with a positive phenotype being expressed earlier or at 
higher levels are desirable. In this case, adding the edges from 
nodes regulating ora59 to che or edges from nodes regulating 
rap2.6l to atlm1 will increase the levels of che, a node which has 
a positive effect on the defence response to Botrytis (unpublished 
data), while having minimum impact on the rest of the network. 

3 ONGOING WORK 
    The validation of the conclusions of our re-wiring simulations 
is being carried out in a protoplast system with plasmids 
containing target genes re-wired with different promoters. 
Protoplasts are plant cells which have had their cell wall removed 
through enzymatic means, making them easy to transiently 
transform with plasmid constructs [15]. Chitin, a complex 
carbohydrate found in fungal cell walls, is used to induce the 

immune response in lieu of Botrytis infection, and flg22, a peptide 
fragment derived from P. syringae is used as an inducer to mimic 
P. syringae infection in protoplasts. Currently, we are measuring 
levels of reporter genes to determine the best concentration/length 
of induction. These reporter genes are obtained from literature 
search (such as frk1) and our network models (such as che) and 
indicate the strength of the Arabidopsis defence response. This is 
measured by coupling the promoter of the reporter genes to GFP 
or luciferase; a change in these readings will indicate a change in 
the levels of the reporter gene. The re-wirings found to produce 
the desired enhanced defence response based on our in silico 
predictions and the reporter gene expression system in protoplasts 
will be used to generate stable constructs in plants and infected 
with Botrytis or Pseudomonas to confirm our results.   
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ABSTRACT
Ginkgo Bioworks has developed high-throughput, low-cost next-
generation sequencing (NGS) pipelines that support plasmid, am-
plicon, and genome sequencing through a unique combination of
state of the art automation, miniaturization through acoustic liquid
handling, and custom software.

1 INTRODUCTION
Ginkgo Bioworks’s mission is to make biology easy to engineer; to
this end, we have built the Bioworks 1 and Bioworks 2 foundries in
an e�ort to scale the process of engineering biology using software
and hardware automation. Engineering biology at Ginkgo Bioworks
involves designing and synthesizing DNA, transforming that DNA
into cells, and testing the phenotypes of the resulting systems to
determine what e�ects that DNA has on the cell. DNA sequencing
is essential to verify that the DNA built and transformed into cells
matches the design.

Current approaches to sequencing involve a combination of
Sanger sequencing and next-generation sequencing (NGS). Due to
its fast turnaround time and low cost, Sanger is typically used for
verifying constructs such as plasmids and PCR amplicons. How-
ever, the low throughput nature of Sanger makes it inadequate
for genome scale sequencing projects and would not allow the
identi�cation of other DNA species such as contaminants. NGS se-
quencing can provide a more unbiased, higher resolution pro�le of
genome scale projects. To drive down the cost of NGS, we developed
pipelines to achieve high-throughput, low-cost sequencing through
a unique combination of state of the art automation, miniaturiza-
tion through acoustic liquid handling methods using the Labcyte
Echo machine, and custom software. This enables the pipeline to
process a large number of user requests, track samples, organize
complex experimental work�ows, aggregate and process data in an
automated fashion, and deliver results back to the requester.

Currently there are two sequencing pipelines running in produc-
tion mode at Ginkgo Bioworks: Plasmid and Amplicon Sequencing
(PandA) and Genome Sequencing (GeNOME). The PandA pipeline
takes in puri�ed DNA plasmid or amplicon samples from foundry
users, performs library prep and pooling for loading on an Illumina
Miseq, and delivers demultiplexed NGS datasets and summary ta-
bles through an automated computational pipeline. The PandA
pipeline is capable of processing a total of 1536 samples from mul-
tiple foundry users in each run and delivers results to the users in
an average of 31 hours. The GeNOME pipeline takes in puri�ed
genomic DNA samples from foundry users, performs library prep
and pooling for loading on an Illumina Nextseq 500, and delivers
demultiplexed NGS datasets and summary tables through the same
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Figure 1: PandA and GeNOME pipelines �owchart

automated computational pipeline. The GeNOME pipeline is capa-
ble of processing a total of 96 samples per run and delivers results
in an average of 5 days.

2 IMPLEMENTATION
Both the PandA and GeNOME pipelines are implemented through
an assortment of software, hardware, and wetware. Here we de-
scribe the implementation of these two pipelines in three parts:
the customer interface, wetlab work�ows, and automated compu-
tational pipeline.

2.1 Customer Interface
The customer interface is implemented using three di�erent soft-
ware tools: Organick, Datastore, and Slack.

Organick [5] is a work�ow management software developed
and used internally at Ginkgo Bioworks that helps foundry users
and operators plan protocols, track samples, and request foundry
services. Both the PandA and GeNOME pipelines are implemented
in Organick as a foundry Service, and users can submit a list of
Service Requests in Organick to request the PandA Service or the
GeNOME Service. Each Service Request indicates the samples that
the user wants the Service to process.

Datastore is a web-based application that aggregates raw data
generated from various instruments and serves as an automated, re-
producible analytical platform for data analysis at Ginkgo Bioworks.
Datastore analyzes the raw data with instrument and user speci�c
methods, and provides an user interface (UI) for users to view and
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download analysis results. Datastore provides a persistent data stor-
age and a customer-facing UI for the output datasets produced by
the automated computational pipeline.

Slack (slack.com) is a cloud-based tool for team communication
and is used for real-time group and 1:1 communication at Ginkgo
Bioworks. We utilize the Slack API to notify individual users when
their Service Requests have been completed and send a link to
relevant analyses in Datastore for the user to view and download.

2.2 Wetlab Work�ows
The wetlab steps are organized by two Organick work�ows: Quan-
ti�cation and Library Prep. The quanti�cation work�ow batches
samples from the user submitted Service Requests and measures the
DNA concentration. High-throughput, high-speed sample process-
ing is achieved using acoustic liquid handling. Quanti�ed samples
that are in the accepted concentration range are queued for the
Library Prep work�ow. The Library Prep work�ow performs a
miniaturized Nextera library preparation similar to what developed
by Shapland et al [9] using acoustic liquid handling before loading
the samples on an Illumina Sequencer. The Illumina Miseq is used
for PandA and Illumina Nextseq 500 is used for GeNOME.

Each Organick work�ow is generated automatically with the
click of a button, eliminating the need for the operator to do any
complex setup and preventing human errors. The work�ow consists
of steps for operators to follow and execute. Steps that involve liquid
transfers will generate a robot.csv �le that describes each liquid
transfer in a row and can be loaded onto the liquid handling robots
through the foundry’s automation platform. Organick keeps track
of sample information such as content, volume, and lineage in the
work�ows. Most importantly, Organick enables a single operator
to manage and execute the complex NGS library prep work�ows
with thousands of samples in a reliable and reproducible manner.

2.3 Automated Computational Pipeline
The automated computational pipeline is triggered when the end of
a sequencing run has been detected. It retrieves the raw sequencing
data (.bcl �le) from the Illumina sequencer and performs the com-
putational steps shown in Fig 1. Finally, the datasets are uploaded
to Datastore and a Slack noti�cation is sent to the users, instructing
them how to view and download the results.

At the start of the pipeline, the Library Prep work�ow and sam-
ple information from Organick are retrieved to prepare a Sam-
pleSheet.csv �le that contains sample information and the asso-
ciated barcodes. This SampleSheet.csv �le is used by Illumina’s
bcl2fastq conversion software to demultiplex the raw .bcl image
�les to .fastq �les. After .fastq �les have been produced, FastQC [2]
is used to perform read quality assessment. Trimmomatic [4] is used
to remove low-quality bases from the ends of the reads, bwa [7]
is then used on the trimmed .fastq �les to perform read alignment
against a reference sequence (.fasta) retrieved from Organick, fol-
lowed by samtools [8] to sort and index the .bam �les produced by
bwa. The sorted .bam �les are further processed by sambamba [10]
to perform read deduplication. Then freebayes [6] is used to per-
form variant calling to produce variant calling �les (.vcf). To detect

the presence of unwanted DNA species, such as recircularized plas-
mids and contaminants, de novo assembly is performed on the
trimmed fastq �les using SPAdes [3].

The �les produced by the computational pipeline are grouped
based on the lists of Service Requests from users and uploaded to
Datastore. Datastore also includes a summary.csv �le that com-
piles summary information such as total reads sequenced, average
sequencing depth, number of single nucleotide polymorphisms
(SNPs), etc, for each sample in a grouped dataset by further an-
alyzing the .bam and .vcf �les. Finally, a Slack message is sent
to each user with a link to their datasets and the corresponding
summary.csv �le.

The computational pipeline is written in Python, and uses Celery
as a distributed task queue to process chained tasks. The pipeline
is deployed using Docker on an in-house computational cluster
managed by Rancher [1].

3 RESULTS
The PandA pipeline was launched in January of 2017. It is capable
of sequencing 1536 plasmid and amplicon samples in a single run
and the cost per sample is similar to Sanger sequencing. As of June
2017, we have used it to sequence around 18,000 samples from 36
di�erent foundry users with an average turnaround time of 31 hrs.
Measured by the data from inline controls, the PandA service has
generated over 30X coverage for 97.5% of samples.

The GeNOME pipeline was launched in May 2017. It is capable
of sequencing 96 genomic DNA samples in a single run with an
average turnaround time of 5 days. As of June 2017, it has sequenced
around 200 genomic DNA samples from over 10 foundry users.
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1. INTRODUCTION
Genetic Design is a process in which a designer starts

with a concept in mind and turns it into a DNA-level de-
sign. Whether this concept is a genetic circuit, bio-synthetic
pathway, or even a multi-domain protein, designer needs to
choose appropriate libraries of DNA parts and put those
parts together in a particular order and structural orienta-
tion. This top-down design takes a lot of time, when done
manually. Genetic design automation software SBOLDe-
signer 2 [5] utilizes a canvas-based user interface where de-
signers can put parts together into a genetic construct. While
SBOLDesigner 2 provides some great functionalities and an
intuitive way to work with genetic constructs, the process of
fetching parts and stitching parts together into a genetic con-
struct has to be repeated by users for each of their designs.
To achieve high throughput and automation, Computer-
Assisted Genetic Design would greatly benefit from more
formalized design abstractions of the desired part library and
constraints on their composition. This motivated creation
of the synthetic-biology computer-language Eugene [2].

Eugene is a computer language for Synthetic Biology that
enables forward-engineering of DNA-level designs by express-
ing design abstractions [4]. While Eugene provides a power-
ful constrain-based system for expressing design strategies,
the designer still have to learn this language in order to write
specification files. This is particularly challenging for exper-
imentalists that typically lack programming skills. To lever-
age this, we provide design templates, written in Eugene,
to abstract some of the design strategies that experimen-
talists employ in their research. Each template specifies a
structural design strategy, commonly used by molecular bi-
ology, to express gene(s) of interest. These templates auto-
generate rule-based combinatorial designs of variable length
and part composition without a need to re-write the speci-
fication each time for similar designs.

2. DESIGN TEMPLATES
Each design template is a function that takes a part li-

brary as an argument and returns rule-compliant combina-
torial assemblies (Fig. 1).

2.1 Specification
Design template specifications are written in Eugene lan-

guage [2] and provide instructions for a computer to put

Figure 1: Example of a design template written in

Eugene language. This template can be applied onto

a Bio-synthetic Gene Cluster (BGC) of a variable

length and part library.

parts together, in a correct order and structural orientation
(Fig. 1).

2.1.1 Optional Features
Figure 1 contains an optional component ribozyme (a self-

cleavable RNA). Designers can specify their own components
using Eugene and create custom part performances values
and constraints.

2.1.2 Integration of Templates
We are extending capabilities of Owl [1] software to create,

test, store, and invoke genetic design templates for various
applications. Owl exposes a set of design templates for var-
ious applications of Synthetic Biology.

2.2 Use-Case Scenario
Figure 2 summarizes an application of design templates

in target molecule production, or gene cluster design. De-
scribed workflow can be integrated vertically with the down-
stream applications for further analyses, such as but not
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Figure 2: Data workflow and use-case scenario. (1) Designers encode abstractions of their genetic designs, in

Eugene language. (2) A user has a concept in mind of a target molecule to produce. (3) The user searches

Bio-synthetic Gene Cluster (BGC) database, for gene cluster that is either known or predicted to produce

that target molecule, and part repository, to select part library (regulatory sequences). (4) User invokes

particular design template to produce genetic constructs. (5) Genetic construct is ready for downstream

applications and subsequent tests for target molecule production.

limited to: codon and part optimizations, Design of Experi-
ments, part refactoring, chemical assembly and cloning, and
Machine Learning.

2.3 Applications

2.3.1 Gene Cluster Design
Gene Cluster Design use-case scenario is explained on Fig-

ure 2.

2.3.2 Genetic Circuit Design
Eugene specification for genetic circuit design is already

used by Cello [3]. Cello invokes Eugene for constrained com-
binatorial enumerations of genetic constructs within genetic
circuits.

2.3.3 Protein Design
Design templates can contain protein domains (tags, fu-

sion proteins, catalytic sites, other structural and functional
domains) as parts and, therefore, do constraint-based pro-
tein design as well.

2.3.4 CRISPR design
Design templates could also be used to specify spacer com-

positions within the CRISPR arrays, where spacers are rep-
resented as parts for combinatorial rule-based assembly.

2.3.5 RNA Design
Same as for Protein Design, RNA motifs can be treated as

parts for specification purposes. Information about motifs
can be retrieved from RNA structural databases, such as the

RNA 3D Motif Atlas1.
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