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ABSTRACT
New metabolic engineering techniques hold great potential
for a range of bio-industrial applications. However, their
practical use is hindered by the huge number of possible
modifications, especially in eukaryotic organisms. To ad-
dress this challenge, we present a methodology combining
genome-scale metabolic modelling and machine learning
to precisely predict cellular phenotypes starting from gene
expression readouts. Our methodology enables the identi-
fication of candidate genetic manipulations that maximise
a desired output – potentially reducing the number of in
vitro experiments otherwise required. We apply and vali-
date this methodology to a screen of 1,143 Saccharomyces
cerevisiae knockout strains. Within the proposed framework,
we compare different combinations of feature selection and
supervised machine/deep learning approaches to identify
the most effective model.
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1 INTRODUCTION
Cellular growth and gene expression are closely related in
unicellular organisms, as they co-participate in mutual regu-
lation. This relationship has yet to be fully understood, and in
general predicting cellular growth following genetic manip-
ulations is still challenging. Understanding and controlling
cellular growth has important applications in biotechnol-
ogy for the development of efficient cell factories, but the
identification of such strains is still a complex issue [10].
We propose a novel multi-view learning framework that

utilises both transcriptomics data and strain-specific meta-
bolic fluxes to predict outputs of bio-industrial interest. To
demonstrate the efficacy of this framework, we target it to
predicting cellular growth of S. cerevisiae, one of the main
eukaryotic platforms for bio-industrial production.

∗Oral presentation

2 METHODS
In this work, we started from 1,143 S. cerevisiae gene expres-
sion (GE) profiles – our first data view – each of which are
sampled from single deletion strains and are coupled with
their corresponding growth rate fold change [8]. We used a
genome-scale metabolic model (GSMM) of yeast metabolism
[6] in conjunction with METRADE [1] – which uses gene
expression to tailor reaction rate bounds – to build an equal
number of strain-specific GSMMs. We next used regularised
flux balance analysis (RFBA) [11] to determine reaction fluxes
for the entire network by maximizing the biomass accumu-
lation rate subject to regulatory and biochemical constraints.
The solutions provide steady-state reaction rates (fluxes) for
each yeast strain and every reaction in the GSMM. We used
the metabolic fluxes (MF) generated in this phase as a second
data view in the following prediction stage.
In the supervised learning phase, we employed the fol-

lowing methods: (i) support vector regression (SVR) [3]; (ii)
random forest (RF) [4]; and (iii) deep neural networks (DNN).
These were selected based on their suitability to build predic-
tive models starting from high-dimensional dataset such as
our transcriptomic and fluxomic profiles. We used the caret
R package for SVR and RF [9], while DNNwere implemented
through the keras Python library [5].
Given the high dimensionality of our data, we explored

whether feature selection can identify relevant genes ormeta-
bolic reactions, to build simpler and more interpretable mod-
els. We focused on three state-of-the-art techniques previ-
ously applied to omics data: (i) sparse group lasso (SGL) [12];
(ii) non-dominated sorting genetic algorithm II (NSGA-II)
[7]; and (iii) iterative random forests (iRF) [2].

3 RESULTS
We developed and evaluated a computational pipeline for
predicting S. cerevisiae growth rate from experimental and
simulated omics data, which is summarised in Figure 1a. In
brief, we used strain-specific GSMMs and RFBA to estimate
the MF activity of 1,143 yeast mutants in log phase, starting
from their GE profiles and optimising the GSMM building
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Figure 1: (a) Workflow of the proposed methodology: starting from GE profiles for different synthetic yeast strains – where
the colour tones represent rates of GE (greens), target doubling time (reds) and MF (blue to orange) – we build strain-specific
GSMMs fromwhich we estimate the MF activity. Next, we build data-driven predictive models using both GE andMF informa-
tion. (b) Correlation between the growth rate simulated by the strain-specific GSMMs and the relative doubling time for the
same strains. This shows that the strain-specific GSMMs correctly capture the metabolic state across strains.

Table 1: Full set of accuracy scores across all dataset-
method combinations tested against an unseen set of strains
to determine model generalisation: mean absolute error
(MAE),median absolute error (MDAE), Pearson’s correlation
coefficient (PCC). The final column indicates the percentage
of fluxomic features (FF%) of the dataset. Here MF+GE cor-
responds to the full data profiles from both the gene expres-
sion and metabolic fluxes.

Dataset Method MAE MDAE PCC FF%
MF+GE SVR 0.080 0.054 0.845 36
MF+GE RF 0.077 0.048 0.867 36
MF+GE DNN 0.072 0.049 0.887 36
iRF data SVR 0.070 0.048 0.886 0
iRF data RF 0.075 0.052 0.869 0
iRF data DNN 0.073 0.048 0.882 0
NSGA-II data SVR 0.072 0.049 0.889 24
NSGA-II data RF 0.078 0.047 0.843 24
NSGA-II data DNN 0.081 0.053 0.861 24
SGL data SVR 0.081 0.057 0.865 34
SGL data RF 0.081 0.052 0.846 34
SGL data DNN 0.084 0.058 0.866 34

based on the simulated growth rate (Figure 1b). Then, we
built and cross-compared machine and deep learning models
predicting yeast growth from integrated GE and MF infor-
mation (MF+GE), with and without feature selection. In this
phase, we tested SVR, RF and DNN in combination with SGL,
NSGA-II and iRF. We thereby created three further datasets
(SGL data, NSGA-II data and iRF data respectively) compris-
ing the features identified by each of these approaches.
Depending on the combination of dataset and learning

algorithm, we observed different trends in prediction scores.
Overall, the best performing methods are SVR combined

with iRF and NSGA-II, and DNN without prior feature se-
lection. We note that in the case of SVR, feature selection
can sensibly improve its prediction accuracy, while there is
an opposite trend for DNN. This could suggest that effective
DNN models embed non-linear relationships among genes
and metabolic reactions that involve a larger set of features.
Importantly, the MF variables selected allow us to mecha-
nistically understand the factors governing cell growth and
further inform potential manipulations.

4 CONCLUSIONS
Our integrative models enable the joint analysis of exper-
imental genetic regulation patterns and knowledge-based
metabolic information to predict yeast cell growth. Our re-
sults suggest that integratingmulti-omics variables andmeta-
bolic modelling can improve yeast growth predictions and
provide mechanistic biomarkers. Finally, our pipeline has
potential applications in metabolic engineering scenarios,
and can be readily extended to other hosts.
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