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ABSTRACT

Motivation: Metabolic engineering algorithms provide means to opti-

mize a biological process leading to the improvement of a biotechno-

logical interesting molecule. Therefore, it is important to understand

how to act in a metabolic pathway in order to have the best results in

terms of productions. In this work, we present a computational frame-

work that searches for optimal and robust microbial strains that are

able to produce target molecules. Our framework performs three

tasks: it evaluates the parameter sensitivity of the microbial model,

searches for the optimal genetic or fluxes design and finally calculates

the robustness of the microbial strains. We are capable to combine the

exploration of species, reactions, pathways and knockout parameter

spaces with the Pareto-optimality principle.

Results: Our framework provides also theoretical and practical guide-

lines for design automation. The statistical cross comparison of our

new optimization procedures, performed with respect to currently

widely used algorithms for bacteria (e.g. Escherichia coli) over different

multiple functions, reveals good performances over a variety of

biotechnological products.
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1 INTRODUCTION

Metabolic engineering is becoming central in basic and applied
biological fields and requires mathematical models for accurate

design purposes. The aim is overproducing desired metabolites
by operating on genetic manipulations, as well as identifying
novel and non-native synthesis pathways. Many organisms are

used to analyze the metabolite production potential and identify
the metabolic interventions needed to produce the metabolite of
interest. Thus, strains have been systematically designed through

in silico analysis to overproduce target metabolites, such as lyco-
pene (Alper et al., 2005), ethanol (Jarboe et al., 2010) and iso-
butanol (Atsumi et al., 2010). The efforts are particularly focused

on predicting flux distributions and network capabilities, most
notably flux balance analysis (FBA) (Orth et al., 2010). Recent

FBA models incorporate also information on enzymes and

genome, and integrate the relationships among genes, enzymes

and reactions. This makes it well suited to studies that

characterize many different perturbations such as different sub-

strates or genetic manipulations (knockouts).

In the past years, a variety of methods has been implemented

to search for the genetic manipulations that optimize a cellular

function of interest. These methods, such as OptKnock (Burgard

et al., 2003), OptFlux (Patil et al., 2005), OptGene (Rocha et al.,

2008) and GDLS (Lun et al., 2009), have been tested in FBA

organism models. However, all these methods require high com-

putational efforts: the execution times grow exponentially

(Burgard et al., 2003; Patil et al., 2005; Rocha et al., 2008) or

linearly (Lun et al., 2009) as the number of manipulations

allowed in the final designs increases. Because of the large

number of reactions occurring in the cellular metabolism, the

dimension of the solution space is very large and finding genetic

manipulations is quite expensive.
In this work, we use a multi-objective optimization algorithm to

seek the genetic manipulations that optimize multiple cellular func-

tions. The algorithm implements a global search with a heuristic

and combinatorial method called genetic design through

multi-objective optimization (GDMO). The idea is to use

and improve the Pareto-optimal solutions. Pareto optimality is im-

portant to obtain not only a wide range of Pareto-optimal solutions

but also the best trade-off design, as reported by Cutello et al. (2006)

for the protein structure prediction problem. Moreover, the

multi-objective optimization turns out to aid in the automatic

design in several biological problems (Stracquadanio et al., 2010).
The area underlying the Pareto curve and the first derivative,

and in particular the presence of jumps (i.e. quick variations in

the objective functions during the optimization procedure), carry

valuable biotechnological information. For the first time, we use

the "-dominance analysis so as to consider all the solutions ob-

tained by GDMO that are dominated with a tolerance " by the

Pareto-optimal solutions. We report that multi-objective opti-

mization provides more insights than single-objective optimiza-

tion on the capability of these organisms to adapt to the

simultaneous presence of different conditions and constraints.

We combine multiple-target optimization with knockout param-

eter space to investigate the most complete available metabolic

data and search for the optimal nutrients in strains that allow the

maximization or minimization of metabolic targets, namely

Escherichia coli (Feist et al., 2007), Geobacter sulfurreducens

(Sun et al., 2009) and many others.*To whom correspondence should be addressed.
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Additionally, we relate pathways to sensitivity analysis (SA).

In modeling, SA is a method used to discover the main inputs,

that is the inputs that have a substantial influence on the out-

puts of the model. In the last years, SA indices have been

adopted in systems biology interrogating the reactions space

(RoSA—reactions oriented SA) (Stracquadanio et al., 2010)

and species space (SoSA—species oriented SA) to find their

influence on the outputs of the system (Zhang and Goutsias,

2010). In this work, we perform SA to find the most sensitive

pathways in the FBA model of E.coli. In particular, we present

the novel pathway-oriented SA (PoSA), to find the genetic ma-

nipulations that have the largest influence on the output of the

model. Unlike other SA methods applied in biological model-

ing, whose inputs (reactions or species) are valued in a real

region of interest, PoSA is applied when inputs are valued in

a binary region of interest. PoSA investigates the knockout so-

lution space and determines the influence of the pathways on

the outputs of an FBA model. Since our search-and-optimize

algorithm provides a set of feasible solutions with different gen-

etic manipulations, it is worth seeking a relationship between

the sensitivity indices and the proposed manipulations. In this

way, we are able to select only the best manipulations. In par-

ticular, thanks to the information provided by PoSA, we can

choose the GDMO knockout strategies that affect genes belong-

ing to insensitive pathways.
Each point of the Pareto front represents a strain, i.e. an E.coli

with specific genetic manipulations, and it is also associated with

three robustness analysis (RA) indices that we compute. The

robustness estimates how robust is a strain obtained by GDMO

when it undergoes small perturbations, which can be external

(changes in the nutrients) or internal (changes in the metabolism).

Among the strains proposed by GDMO, we are able to choose

the most robust one. In particular, we use three robustness meth-

ods to evaluate different components of the model.

2 SYSTEM AND METHODS

Here, we focus on the development of a new computational

framework to design optimal and robust bacteria able to perform

particular tasks.
In Figure 1, we show the layout of our computational frame-

work applied to organisms modeled through FBA. The frame-

work is composed of three blocks. The first is constituted by the

SA, able to find the most sensitive parameters of the model. We

can investigate the reactions and the species in the metabolic

model in terms of sensitivity, using the RoSA and PoSA meth-

ods. Furthermore, the novel PoSA is able to identify the most

sensitive metabolic pathways by ranking them according to

knockouts. We consider a single pathway as an input of the

system. Each pathway (that is a set of reactions converting par-

ticular substrates in specific final products) is perturbed by

mutating genes that control its biochemical reactions. PoSA

ranks the pathways according to their influence on the outputs

of the model. Pathways with important influence have large sen-

sitivity index (�� and ��), as reported in the pre-processing part

of Figure 1. Each pathway in the graph is represented by a circle

and its size indicates the number of genes belonging to it.

The multi-objective optimization algorithm searches both

for the genetic manipulations (through gene deletions) and

for nutrients with respect to defined target functions. Hence,

we perform both the genetic design and the flux design in micro-

bial strains. The result of the multi-objective optimization is a set

of non-dominated points, called Pareto front (or Pareto surface).

The non-dominated points are shown in red in Figure 1, while all

the dominated points are shown in blue. All the dominated

points and the non-dominated points, which satisfy all of the

inequality and equality constraints, and all of the variable

bounds, constitute the observed feasible region.
In the genetic design, each strain (a particular phenotype) is

identified by a binary ‘knockout vector’ (which represents the

Fig. 1. A schematic representation of our automatic framework for optimal bacterial metabolism. In the pre-processing step, the species (SoSA), reaction

(RoSA) and pathway-oriented SA (PoSA) are applied to the metabolic model. Then, the multi-objective optimization allows genetic and flux design. In

the post-processing step, suitable solutions (selected from the Pareto front) are subjected to global, local and PoRA analysis. The "-dominance analysis is

performed to investigate the neighborhood of the suitable genetic designs
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genotype), whose elements are 1 when the corresponding gene set

is turned off. The importance of the knocked out genes can be

evaluated by means of the ranking provided by PoSA. A gene set

can be composed of a single gene, when it synthesizes for an

enzyme, or can be associated with more genes, which synthesize

for enzymes that form enzyme complexes and enzyme subunits.

The relation between genes in a gene set is regulated bymeans of a

Boolean relationship.When all the genes are necessary to catalyze

the corresponding reactions (a single gene set can regulate more

reactions), genes are linked by the ‘AND’ operator; otherwise, if

one gene is sufficient, genes are linked by the ‘OR’ operator. In

addition, through the multi-objective optimization, we are also

able to find the favorable nutrients set (flux design) to optimize

the wild-type/strains yield and evaluate the over/under investment

of nutrients (uptake rate of fluxes). Pareto optimality is very

useful for the analysis of metabolism, as reported in the previous

works by Sendin et al. (2009) and Schuetz et al. (2012), where the

authors used deterministic multi-objective approaches to evaluate

the fluxes distributions in the E.coli wild-type network. In our

work, we remark the usefulness of Pareto optimality and adopt

an effective and state-of-the-art algorithm to investigate the

knockout space. After the optimization, we perform an "-domin-

ance analysis to search accurately near the edge of the

Pareto-optimal region.
The RA is the third task of our computational framework.

For each phenotype (strain or wild type), in a post-processing

step, we process the fragility of the metabolic network when it

is subjected to small perturbations, which can be hexogen or

endogen. From the Pareto fronts, we select interesting solutions

using decision-making methods; for instance, we select the solu-

tions near to the ideal solution, the knee points, the end points

or points with suitable features. For each solution, we calculate

the global robustness (GR), the local robustness (LR) and

the pathway-oriented robustness (PoRA) values, indicating,

respectively, the robustness of the whole network, of each

single reaction and of each metabolic pathway.

We test the algorithm in the genome-metabolic network of

E.coli (Feist et al., 2007), composed of 2382 reactions, in order

to maximize a metabolite of interest and simultaneously ensure

the biomass formation, with the minimum knockout cost. The

knockout cost is defined according to the Boolean relationship

between genes. For example, if a gene set is composed of two

genes linked by ‘AND’, the cost to ensure the turning off of the

corresponding reactions (knockout cost) is 1. Instead, the cost to

ensure the catalysis of the corresponding reactions is 2, since

both genes are necessary to turn on the reactions associated

with that gene set.

2.1 FBA modeling framework

FBA is a mathematical approach for analyzing the flow of metab-

olites through a metabolic network (e.g. their formation and deg-

radation, transport and cellular utilization) composed of

n biochemical reactions. For every metabolite Xi, i ¼ 1, . . . ,m

a material balance is dXi=dt ¼
Pn

j¼1 Sijvj, where Sij is the stoi-

chiometric coefficient associated with each reaction flux

vj, j ¼ 1, . . . , n. If we consider this material balance under

steady-state conditions, we have
Pn

j¼1 Sijvj ¼ 0. By considering

all the intermediates simultaneously at steady state, the balance

equation can be written in matrix form Sv¼ 0, where S is the

stoichiometric matrix of m rows and n columns, and v is the

vector of the fluxes (metabolic and transport fluxes). The matrix

S is not square and n4m, sowe have a plurality of solutions. Each

solution is a flux distribution representing a particular metabolic

state, depending on the genotype and on the transport fluxes. The

FBA approach finds the metabolic state in order to optimize a

particular objective function, such as the maximization of growth

rate or ATP production. Consequently, the problem can be for-

mulated as a linear programming problem:

maximize ðor minimizeÞ f 0v, such that Sv ¼ 0

vLj � vj � vUj , j ¼ 1, . . . , n,
ð1Þ

where f is a vector of weights (n dimensional). All the elements in

f are either 0 or 1. fi is equal to 1 if vi is the objective we want to

optimize. There may be more elements in f equal to 1, when there

are several natural objectives to optimize. vLj and vUj are the

lower- and upper-bound values (thermodynamic constraints) of

the flux vj. (In our analysis, we consider vUj ¼ 100 and vLj ¼ �100

for the fluxes that represent reversible reactions.) The output of

FBA is a particular distribution of fluxes, denoted by v, that

optimizes the objective functions. Remarkably, FBA does not

describe how a certain flux distribution is realized (by kinetics

or enzyme regulation), but which flux distribution is optimal for

the cell; for instance, it provides the highest rate of biomass pro-

duction at a limited inflow of external nutrients. Biomass can be

defined in terms of the biosynthetic requirement for the cell and

is represented by a dummy reaction formulated according to

experiments found in the literature.

2.2 Pathway-oriented SA

In order to allow our algorithm towork at the genetic level, we use

the gene–protein–reaction (GPR) mappings. GPRmappings pro-

vide the linksbetweeneachgeneand the reactions vj thatdependon

it and define how certain genetic manipulations affect reactions in

the metabolic network. For a set of L genetic manipulations, the

GPR mappings are represented by a L� n matrix G, where

the ðl, jÞth element is 1 if the lth genetic manipulation maps onto

the reaction j, and is 0 otherwise.GPR associations distinguish be-

tween single- and multi-functional enzymes, isoenzymes, enzyme

complexes, enzyme subunits, so that they capture the complexity

and diversity of the biological relationships through aBoolean ap-

proach.WeusedtheapproachimplementedinOptKnock(Burgard

etal.,2003)tofindthefluxesdistributionthatreproducesthedesired

productions (synthetic objectives) and achieves the maximal

growth. The bi-level problem is represented as

max g0v

such that
XL
l¼1

yl � C

yl 2 0, 1f g

max f 0v

such that Sv ¼ 0

ð1� yÞ0Gjv
L
j � vj � ð1� yÞ0Gjv

U
j ,

j ¼ 1, . . . , n,

ð2Þ
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where g is a vector of weights (n dimensional) associated with the
synthetic objectives and g0 is its transpose. For example, when

the synthetic objectives vj and vh have to be maximized, the

weights gj and gh are equal to 1. y is the knockout vector of L

bits. If there are no impaired reactions in the metabolic network,
y contains only zeros. Conversely, when yl ¼ 1, the gene set em-

broiled in the manipulation l is turned off, and the corresponding

reactions are in the absent status (the lower and upper bounds

are set to zero, resulting in a modified metabolic network). C is
an integer representing the maximum number of knockout

allowed. The bi-level problem can be converted to a MILP prob-

lem (for a detailed description, see the original work by Burgard

et al., 2003). We implemented and solved the problem using the

GLPK solver.
In PoSA, the knockout vector y used to represent the genetic

manipulations is partitioned in p subsets of bits b1, b2, . . . ,f

bs, . . . , bpg. Each subset bs includes the genetic manipulations

linked to the reactions involved in the sth metabolic pathway

of the network. Each subset bs has a cardinality Ws, where

Ws5 L, 8s ¼ 1, . . . , p. The genes are clustered in metabolic
pathways as reported by Feist et al. (2007). Each pathway per-

forms a particular task in the metabolism, e.g. the citric acid

cycle, the oxidative phosphorylation, the pentose phosphate path-

way and so on. PoSA takes also into account the eventuality that

a reaction belongs to different pathways: when the gene respon-
sible for that reaction is knocked out, the reaction is impaired in

all its pathways. We generated the gene-pathway (GP) mappings,

defined by the L� p matrix P, where the ðl, sÞth element of P is 1

if the lth genetic manipulation is linked to the reactions involved
in the sth functional pathway, and 0 otherwise. We also adopted

the reaction-pathway (RP) mappings, mathematically described

by the n� p matrix R, where the ðj, sÞth element of R is 1 if

the jth reaction is part of the sth functional pathway, and 0 other-
wise. The E.colimodel used for our analysis has p¼ 36 functional

pathways.

For the combinatorial problem described in (2), we define the
‘elementary effect’ (Morris, 1991) for the input bs as

EEs ¼
Fðb1, b2, . . . , bs�1, ~bs, bsþ1, . . . , bpÞ � Fð ~yÞ

�s
, ð3Þ

where ~bs is the mutation on the input bs and consists of the
switching of bits chosen randomly in bs: if a bit is equal to

0 (or 1), the permutation turns it into 1 (or 0). �s is a scale

factor defined as:

�s ¼
1

Ws

XWs

i¼1

~bsðiÞ, 8s ¼ 1, . . . , p: ð4Þ

The output F(y) considered in PoSA is the vector v of
fluxes. ~y is the mutation performed on the knockout vector

y defined in the Boolean region of interest � ¼ 0, 1f gL¼

ðy1, . . . , yl, . . . , yLÞjyl 2 0, 1f g
� �

.
The distribution of effects EEs is obtained by permuting y

through a random sampling of KQ points from � and permuting

bs by randomly sampling KQN points from �. If the procedure
was performed for each input, the result would be a random

sample at a total cost of KQ for calculating Fð ~yÞ and KQN

for Fðb1, b2, . . . , ~bs, . . . , bpÞ, with a total cost of pKQðNþ 1Þ

evaluates of function. As regards the details, in the

Supplementary Material we report the code and pseudo-code
of the algorithm.
The estimation of the mean �� and the standard deviation ��

of the distribution of the elementary effects will be used to detect
those inputs that should be considered influent in the model.
A high �� indicates an input with an important ‘overall’ influ-

ence on the output, while a large �� indicates an input
whose influence is highly dependent on the values of the inputs

(Morris, 1991).

2.3 Optimization through genetic manipulation

GDMO is a combinatorial global search method that finds the

genetic manipulation strategies to simultaneously optimize mul-
tiple cellular functions. The simultaneous optimization of mul-
tiple objectives differs from the single-objective optimization

because the solution is not unique when the objectives are in
conflict with each other. For instance, the knockout strategy

able to ensure the production of a metabolite alters the biomass
formation and the ability of the organism to reproduce itself.
Therefore, metabolite production and biomass formation are

strongly in conflict. The solution of a multi-objective problem
is a potentially infinite set of points, called Pareto-optimal solu-

tions or Pareto front. A solution is said to be Pareto optimal if
there exists no feasible solution for which an improvement in one

objective leads to a simultaneous improvement in one (or more)
of the other objectives. Formally, a point y� in the solution space
is said to be Pareto optimal if there does not exist a point y such

that F(y) dominates Fðy�Þ, where F is the vector of Z objective
functions. In our case, the space of variables (i.e. the domain

of y) is discrete.
Our method implements a genetic algorithm inspired by

NSGA-II (Deb et al., 2002) and is composed of four key steps.

We start with the initialization of the population Pop and the
computation of the fitness score. The population can be initia-

lized in different ways: randomly or assigning present status to all
genes or selecting a set of knocked out genes. The population
Pop is represented by a I� ðLþ Zþ 2Þ matrix, where I is the

number of individuals, L is the number of decision variables and
Z is the number of objective functions. The last two columns are

used to store two parameters of the algorithm linked to each
individual: the rank and the crowding distance (Deb et al.,
2002). The values of the objective functions are calculated by

solving the combinatorial problem (2). Each individual repre-
sents a feasible solution, composed of the proposed knockout

strategy ~y. The fitness score is computed after sorting according
to the level of non-domination. Each individual is assigned a
rank, and between two solutions with different non-domination

ranks, we prefer the solution with the lowest rank (Deb et al.,
2002).

Successively, three steps are iteratively performed. In a binary
tournament selection process, two individuals are selected at
random, and their fitness is compared. The individual with the

best fitness is selected as a parent. The algorithm selects a
number of parents (i.e. the best individuals) equal to the half

of the population. Parents are mutated using a combinatorial
mutation operator to create an offspring population. A mutation
represents a switch, from 0 to 1 or from 1 to 0. The process

is randomly executed; for each parent individual, we create ten
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offspring, but only the best is chosen. Mutations can achieve the
maximum knockout number equal to the parameter C (fixed

at 50 by default). A new population of I individuals is formed
selecting the best individuals from the parents of the previous

generation and the current offspring. The new population under-
goes a new round of evaluation. Finally, a selection operator is

performed in order to reach the last front. For each generation of
the algorithm, the Pareto-optimal solutions are provided.

This cycle is repeated until the number of generations reaches
its upper bound. The number of generations D and individuals

I are parameters chosen by the user. After calculating the
Pareto-optimal solutions, we perform a post-processing filtering,

in order to eliminate redundant knockouts that are not, in fact,

necessary for the achievement of the selected production and
biomass level.
The time complexity of the genetic algorithm is OðZDI2Þ,

where Z is the number of the objectives, D the number of gen-
erations and I the population size.

2.4 FBA using experimental conditions

The gene expression data provide several information on the
activation of genes when the organism undergoes specific exter-

nal stimuli. In a first approximation, we may transform micro-
array data matrix in a Boolean matrix, where 0 represents the

knockout condition for a gene and 1 represents the activation.
Our framework is able to read gene expression data, transfer

them to a metabolic model and evaluate in silico the metabolic

fluxes distribution using FBA. In this way, it is possible to in-
vestigate the behavior of an organism as well as to compare

different experimental conditions. It could be interesting, in
future developments, extending the exploration analysis from a

binary domain to a quantitative domain, evaluating the gene
expression in the metabolic network. In addition, through our

optimization method, we can deduce how the growth of the or-
ganism improves in a given experimental condition, when add-

itional genes are turned off (or on).

2.5 Pareto front "-dominance

Another analysis that we perform is inspired by the idea of

Laumanns et al. (2002), namely to use a condition of approxi-
mated dominance for their evolutionary multi-objective algo-

rithm with the aim of improving the diversity of solutions and
the convergence. However, we use this idea to perform a

post-processing analysis in order to calculate an approximated
Pareto front. This way, we search for solutions that may have

been discarded because they are dominated by a small amount "
that, for our purposes, can be considered negligible. Therefore,
once the optimization routine has been performed, all the

sampled points are revisited. Then, a new set of solutions is
built, called ‘"-non-dominated’ points set, by applying a ‘relaxed’

condition of dominance, called "-dominance. In a formal way,
assuming that all the objective functions are positive and must be

maximized, given "40, we seek all the points (solutions) w be-
longing to the set: w : FrðwÞ � � � FrðuÞ, 8 r ¼ 1, :::,Z

� �
, where

F is the vector of the Z objective functions and u represents all

the others sampled points. This set will contain both the new ‘"-
non-dominated’ solutions and the old non-dominated ones. The

results are shown in Figure S8 of the Supplementary Material.

2.6 Robustness analysis

After the optimization, the validity of the biological strain, de-
signed in silico, must be tested, and this is performed by the RA.

In this way, we assess the ability of a strain to adapt to small
perturbations that can occur at any stage of the biochemical

processes, either within the bacterium or caused by the environ-
ment in which it reproduces itself.
The basic principle of this analysis is the following. First,

we define the perturbation as a function � ¼ � �, �ð Þ, where �
applies a stochastic noise � to the system � and generates a trial

sample �. The �-function is called �-perturbation. Without loss
of generality, we assume that the noise is defined by a random

distribution. We generate a set T� of trial samples � in order to
render the calculation of robustness statistically meaningful.

Each element � of the set T� is considered robust to the perturb-
ation for the stochastic noise � and the given property ’ if the

following condition is verified:

� �, �, ’, �ð Þ ¼
1, if j’ �ð Þ � ’ �ð Þj � �
0, otherwise,

�
ð5Þ

where � is the reference system, ’ is a metric (or property), � is a
trial sample of the set T� and � is a robustness threshold. The

definition of this condition makes no assumptions about the
function ’.
The robustness of a system � is defined as the number of

robust trials of T� with respect to the total number of trials

jT� j. The robustness index is a function of �, so the choice of
this parameter is crucial. Since we are interested in the behavior
of strain when subjected to small perturbations, and since the

behavior is acceptable when the deviations from the original
value is as small as possible, we chose the values of " equal to

1% of the metric and � equal to 1% of the perturbed variable.
According to the principle above reported, we implement the

global, local and PoRA methods. In our analysis, we perturb the
upper vUj and lower vLj bounds, j ¼ 1, . . . , n of the metabolic

fluxes. In particular, in GR the perturbation is performed sim-
ultaneously for all the fluxes of the network to evaluate the fra-

gility of the complete organism. In LR, the perturbation is
performed for each flux (hence we have a robustness index for
each flux), whereas in PoRA, the perturbation is performed sim-

ultaneously for all the fluxes clustered in a metabolic pathway
obtaining a robustness index for each pathway. The results are

reported in Table 1 and in the Supplementary Material
(Tables S1 and S2).

2.6 Glocal analysis

We also implement the analysis described by Hafner et al. (2009)

to compare the results obtained by the GR and LR analyses.
In the glocal analysis, the authors implement a procedure that

calculates the volume occupied by those parameters such that the
system maintains the desired characteristics. The volume is com-

puted in the 2n-dimensional parameter space. In our case, the vol-
ume is such that Equation (5) holds. Since this research requires

a huge computational effort, given the high number of dimen-
sions (R2n, where 2n is the number of parameters), it is guided by

an iterative procedure that involves the principal component
analysis. Then, they calculate local coefficients and use them to

derive the key parameters of the robustness (through the
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Spearman’s partial correlation coefficient). In the global part,

we found that the results are comparable in most cases with
our global metrics. The results of the analysis are reported in

Table 1 (R versus GR). In the local part, we found that the

most influential flux is also the one that obtains the minimum
LR value.

2.7 Quantitative and qualitative knockout analysis

Pareto optimality gives information about the trend of organisms

in their ability to produce particular metabolites, as reported in
the previous section. In addition, we color the Pareto points in

order to obtain a map of the knockout cost dispersion (Figure

S8B–D of the Supplementary Material). In this way, each point
characterizes both the phenotype of an organism (for instance,

the amount of acetate and biomass) and the genotype (in terms

of how many genes are knocked out). Nevertheless, it is also
important to give a qualitative score for each knockout strategy.

We have two sensitivity measures: �� (mean) and �� (standard
deviation). Large �� indicates high overall influence, high linear
effect, while large �� indicates that either the specific input is

involved with other inputs, or its effect is non-linear or

non-additive. According to the �� sensitive index obtained by
PoSA, we assign a quality score (QS) for each strain. Strains that

have genetic manipulations involved in pathways with low ��

values are preferred, and thus get a high score. The score ranges
from 0 to 1; 0 when the genetic strategy involves gene sets linked

to the pathway with the largest � index, that is the most sensitive

and 1 when the genetic strategy involves gene sets linked to the
pathway with the lowest � index. The score is normalized by the

square root of the number of samples, since manipulations in-

volve different knocked out genes. Consequently, if we find two
Pareto solutions through GDMO that have the same phenotype

and different knockout strategies, we are able to choose the best

solution in terms of knockout, according to the QS calculated
using PoSA. For the strains reported in Table 1, we obtained

from left to right the QS equal to 0.285, 0.063 and 0.223.

2.8 Implementation

We implement GDMO, SA and RA using MATLAB and

GLPK (GNU Linear Programming Kit). We illustrate the cap-

abilities of GDMO by applying it to several overproduction

problems in iAF1260 E.coli (Feist et al., 2007). In a

pre-processing analysis, we perform a reduction of the FBA net-

work to remove duplicate and dead-end reactions as described by

Burgard et al. (2001), Pharkya and Maranas (2006) and

Mahadevan and Schilling (2003). After the reduction, the result-
ing metabolic network is mathematically identical to the original

network. Initially, in iAF1260, there are n¼ 2382 reactions,

m¼ 1668 metabolites and L¼ 913 gene sets; after the reduction,

we obtain n¼ 959, m¼ 483 and L¼ 632 in anaerobic conditions

and n¼ 1019, m¼ 506 and L¼ 663 in aerobic conditions. In par-

ticular, for acetate and succinate production, we performed ex-

periments in both anaerobic and aerobic conditions, with 10 and

5mmolh�1 gDW�1 of available glucose.

3 RESULTS AND DISCUSSION

Taking into account that each gene is assigned to at least one of

the 36 different pathways in the metabolic network, PoSA evalu-

ates the importance of a pathway on the basis of the knockouts

that are involved in its metabolism and indicates a ranking of the

metabolic pathways in the (��, ��) space reported in Figure 2.
The study of the variance-to-mean ratio (VMR) is a good

measure of the degree of randomness of a given phenomenon.

In the E.coli analysis, PoSA-sensitive �� and �� indices are

linked with a linear relationship and the VMR is41; thus, the

elementary effects set is said to be over-dispersed, highlighting
the presence of great variability. We can deduce that the elem-

entary effects of the 36 pathways are sampled from a negative

binomial distribution. The VMR is linked to the Pareto front

and can be harnessed to explore the solution space, since it

describes the probability distribution of the phenomenon. In gen-

eral, highly networked cell components (such as those for nucleic

Table 1. Comparison between GDMO and previous genetic design methods

Wild type OptFlux OptGene GDLS GDLS OptKnock OptKnock GDMO GDMO GDMO

Acetate 8.30 15.129

(þ82.3%)

15.138

(þ82.4%)

15.914

(þ91.7%)

n.a. n.a. 12.565

(þ51.4%)

13.791

(þ66.13%)

19.150

(þ130.7%)

n.a.

n.a. n.a. n.a.

Succinate 0.077 10.007

(þ12877%)

9.874

(þ12704%)

n.a. 9.727

(þ12514%)

9.069

(þ12362%)

n.a. n.a. n.a. 10.610

(þ13659%)n.a. n.a. n.a. n.a.

Biomass 0.23 n.a. n.a. 0.0500

(�78.4%)

0.0500

(�78.4%)

0.1181

(�77.9%)

0.1165

(�49.6%)

0.130

(�43.72%)

0.053

(�77.10%)

0.087

(�62%)n.a. n.a.

kc n.a. n.a. n.a. 14 26 54 53 3 10 8

GR (%) 54.76/53.68 n.a. n.a. 13.76 16.6 43.24 43.08 45.32 27.6 40.40

LR (%) 54.0/54.67 n.a. n.a. 16.0 21.33 40.0 40.60 39.33 24.0 46.0

R 1.30/1.34 n.a. n.a. 1.45 1.45 1.18 1.02 0.78 0.44 1.32

PoRA (%)100.0/99.33 n.a. n.a. 19.33 28.67 87.33 76.67 81.33 43.33 83.33

We compare OptFlux (Rocha et al., 2008), OptGene (Patil et al., 2005), GDLS (Lun et al., 2009), OptKnock (Burgard et al., 2003) and our multi-objective optimization

algorithm (GDMO) to maximize acetate (Ac) and succinate (Suc) productions [mmolh�1 gdW�1]. The second column reports the amounts of acetate, succinate and biomass

when all the genes are turned on. The third and fourth rows show the biomass [h�1] and the knockout cost (kc). The last four rows show a comparison between the RA

methods. The two values of robustness reported for wild type are referred, respectively, to the productions of Ac and Suc.R-values (Hafner et al., 2009) and GR-values are GR

indices. The strain is more robust when R and GR detect high values. For LR and PoRA, we report the minimum value found, which is associated with the less robust flux

(glucose uptake rate) and the less robust pathway (energy metabolism). ‘n.a.’ stands for not applicable.
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acids, amino acids, cofactors and energetic metabolism) are in

the top right corner, while specific, often single reaction very

abundant components (such as those for bacterial walls, nitro-

gen, glutamic and carbohydrates) are in a bottom left position.

Results in Figure 2 were obtained by evaluating more than 3

million calls to the function F of Equation (3).
In Table 1, we report the genetic strategies obtained by GDLS

(Lun et al., 2009), OptFlux (Rocha et al., 2008), OptGene (Patil

et al., 2005), OptKnock (Burgard et al., 2003) and GDMO,

where the goal is to optimize succinate and acetate productions

in the E.coli metabolic network. To compare these methods, we

run OptKnock, while the GDLS, OptGene and OptFlux solu-

tions are extracted by published data by Lun et al. (2009).
We run GDMO initializing the E.coli network with an empty

set of knockout, i.e. in wild-type configuration, and setting the

population size I¼ 1000 and the number of generations

D¼ 1500. Table 1 reports the best solutions in terms of acetate

and succinate obtained by the previous methods, along with our

proposed solutions. Details of the genetic strategies are reported

in Tables S1 and S2 of the Supplementary Material. We used the

multi-objective optimization method to maximize the production

of metabolites of interest and biomass, minimizing simultan-

eously the knockout cost. Table 1 also reports the robustness

indices for the wild-type organism and strains. The effect of

the knockouts on the robustness of the network can be noticed

by comparing the GR, LR and PORA values of strains with

those of the wild type. The values of GR and LR are of the

same order of magnitude, probably because the robustness of

the network is strongly linked to the glucose uptake rate.
In Figure 3, we show the comparison between the results ob-

tained by the method proposed by Lun et al. (2009) and our

Pareto solutions for optimizing acetate production (in the

Supplementary Material, we report also the results for succinate

production). The solutions provided byGDLS do not outperform

Pareto fronts, since they occupy positions in the area under the

Pareto curves. In the best cases, they lie on the Pareto fronts.

Some suggested solutions and several optimization experiments

have been reported as Supplementary Material (Tables S1 and

S2 and Figs S2 and S3). In addition, the "-dominance ana-

lysis reveals other interesting points. For instance, we find

14.05mmolh�1gDW�1 of acetate with a knockout cost equal to

5 and 9.175mmolh�1 gDW�1 of succinate with a knockout cost

equal to 5.
In order to study the favorable environmental conditions (flux

design), i.e. nutrients for E.coli, we performed the simultaneous

optimization of acetate, succinate and biomass on the complete

network, i.e. without knockouts. We considered the anaer-

obic and aerobic condition (O2 uptake rate¼ 10

mmolh�1 gDW�1) and maintained fixed the glucose uptake rate

at 10mmolh�1 gDW�1. We used NSGA-II (Deb et al., 2002) to

perform the optimization by exploring the continuous space of

exchange fluxes. In our analysis, we perturbed the thermo-

dynamics constrains vLj , j ¼ 1, . . . , nex, where nex is the number

of the exchange fluxes. The decision variables are real values from

0 to �100 (0 when the uptake is not allowed and �100 when the

potential uptake rate is 100mmolh�1 gDW�1 h�1). Only glucose

and oxygen were kept constant. Setting the population size at 100,

we ran NSGA-II for 500 generations. In Figure 4, we show the

results of the optimization in aerobic and anaerobic conditions

(the observed Pareto front and the observed feasible points). In

anaerobic condition, we found 100mmolh�1 gDW�1 h�1 of acet-

ate, 42.918mmolh�1 gDW�1 of succinate and 3.6204 h�1 of bio-

mass (the trade-off). In this condition, we noticed a significant

increment in the L-aspartate, citrate, lactose, fumarate and malate

uptake rates. In aerobic condition, we found 100mmolh�1

gDW�1 h�1 of acetate, 21.889mmolh�1 gDW�1 of succinate,

4.16h�1 of biomass and a significant increment in the L-aspara-

gine, 1, 4-alpha-D-glucan, Fe(III)dicitrate, 2-oxoglutarate uptake

rates. In our analysis, we perturbed simultaneously almost all the

exchange fluxes, but it is possible to select a smaller set of nutrients

according to experimental requirements.
Pareto fronts provide significant information in metabolic

design automation. The size of non-dominated solutions, the

first derivative and the area under the curve are important mar-

kers for the best design within the same organism or between

different organisms. Jumps correspond to sudden decreases in

the availability of entire pathways and sub-networks when a

crucial hub is eliminated, for instance the elimination of Krebs

cycle or other key biosynthetic hubs. The area under the Pareto

Fig. 2. PoSA for model of iAF1260 E. coli. The model is composed of 36

pathways whose reactions and genes are clustered according to the func-

tionality of the pathway to which they belong. The size of a sign is pro-

portional to the number of genes involved in the pathway

A B

Fig. 3. Performance of GDMO. Maximization of biomass and acetate

production in anaerobic (A) and aerobic (B) conditions, with glucose

uptake rate 10mmolh�1 gDW�1 in iAF1260 E.coli. The Pareto fronts

obtained by GDMO are in black, and the results obtained by GDLS in

red, purple, green and blue, set with M¼ 1, 2, 3, 4 and k¼ 1, 2, 3, 4,

respectively. M and k are parameters of GDLS and define, respectively,

the number of solutions proposed and the maximal number of neighbor-

hood genes to knock out for each iteration of the algorithm. For a de-

tailed description, see the original work (Lun et al., 2009)
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front provides an estimate of the number of intermediates which
may be exploited for biotechnology purposes (optimization of an
additional objective) or to build synthetic pathways (synthetic

biology). Given two bacteria or two conditions for the same
bacterium, the highest Pareto front would probably represent
the best conditions for adding or optimizing pathways leading

to new biotechnology products. Pareto optimality is useful
to compare the ability of different organisms for optimizing spe-
cific metabolites (Supplementary Figs S9 and S10).

Through our framework we are able to program bacteria in
order to obtain desired outputs, thus framing them as living
computers (Angione et al., 2012). The goal is to provide a

simple tool to search and propose to the biotechnologist the
best and suitable solutions in silico, so as to reproduce them
in vivo. Our framework investigates nutrients, reactions, meta-
bolic pathways and knockouts for bacteria and other organisms

in an efficient automatic design. We are able to present several
proposals and indicate the best in terms of environmental con-
ditions, knockout cost, robustness and sensitivity. Knockout

strategies are useful in synthetic biology, while simulating the
FBA in a particular experimental condition, using the gene ex-
pression values is important for providing an optimization of

bacteria in a given environment and biotechnological/medical
condition.

Conflict of Interest: none declared.
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Fig. 4. Optimization of acetate production, succinate production (y-axis)

and biomass formation (x-axis). We consider the wild-type bacteria

(i.e. knockout zero) and perform the maximization in aerobic (blue

signs, O2¼ 10mmolh�1 gDW�1) and anaerobic conditions (black signs)

on a basis of 10mmolh�1 gDW�1 glucose fed to identify favorable nutri-

ents (input fluxes). The algorithm reaches the maximum production of

acetate (100mmolh�1 gDW�1). In red we show the Pareto fronts

3104

J.Costanza et al.

 at C
am

bridge U
niversity L

ibrary on February 10, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts590/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts590/DC1
http://bioinformatics.oxfordjournals.org/

