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1 Genome-scale metabolic modelling

Context-specific metabolic modelling. Each of the metabolic reactions is controlled by a
specific combination of genes, named gene sets. In a GSMM, the gene sets are represented using
AND/OR operators. For example, if a reaction can be equally catalysed by two enzymes (namely, the
two enzymes are isozymes), this relationship will be encoded through an OR operator between the two
corresponding genes. Conversely, an AND relation identifies enzymatic complexes where both genes
are necessary for the reaction to occur. GEMsplice [1] changes the reaction bounds of a genome-scale
model by assigning a gene expression value to each gene set, which then affects the lower and upper
bound of the corresponding reactions. Such expression value is obtained by converting the logical
operations into maximum/minimum rules, according to the following map:

Θ(g1 ∧ g2) = min{θ(g1), θ(g2)}
Θ(g1 ∨ g2) = max{θ(g1), θ(g2)},

(1)

where θ(g) represents the expression level of gene g and Θ represents the effective expression level
of the gene set {g1, g2}. GEMsplice thus works as a further constraint inside the FBA optimisation.
Following [2] and unlike its original version [3], we opted for the following map from gene set expressions
Θ to reaction bounds vub and vlb:

vub ← vub Θγ

vlb ← vlb Θγ ,
(2)

where γ is a hyperparameter expressing the relevance of the gene expression in influencing the reaction
bounds. We set γ = 1 according to [2], as this value minimises the linear correlation between predicted
biomass accumulation rates and experimentally-available relative doubling times over all strains.
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2 Interpretation of weights in neural networks and hyperpa-
rameter choice

Let us consider a neural network with one-dimensional output and three hidden layers. Each node
has a weight and a bias term, meaning that we can describe each layer in matrix notation with two
matrices (W and B, the matrices of the weights and the biases respectively). If we indicate the input
data as X and the output as o, then it is possible to describe it mathematically in the following way:

o = f(f(f(f(XW1 +B1)W2 +B2)W3 +B3)W4 +Bo). (3)

where f is the non-linear activation function. Being almost all the activation functions currently used
in research monotonic (included the ones used in the networks of interest in this study), and in view
of the fact that only the relative importance of the features is of relevance for us, it is reasonable to
ignore the functions and consider only the following expression

o = (((XW1 +B1)W2 +B2)W3 +B3)W4 +Bo, (4)

from which, generalising, we can obtain that

o = X

I∏
i=1

Wi +

I−1∑
j=1

Bj

I∏
k=j+1

Wk. (5)

It is hence evident the fact that the weight influencing the input features is just the product of the
weights that each linked neuron possesses.

The following hyperparameters were selected as the best combinations for the neural network
models:
TRSC ANN. Selected hyperparameters: batch size = 32, epochs = 2400, learning rate = 10−2,
neurons first layer = 3500, neurons second layer = 4000, optimiser = RPROP, dropout =
0.6, loss = Smooth L1.

FLUX ANN. Selected hyperparameters: batch size = 32, epochs = 400, learning rate =
10−5, neurons first layer = 1200, neurons second layer = 1800, optimiser = SGD, dropout =
0.6, loss = Smooth L1.

2



3 Supplementary Figures and Tables
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Figure S1: p-values from the Wilcoxon signed-rank test conducted for each couple of Regularised Linear
Model and MMNN on the absolute error distribution, when using both the views.
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Figure S2: p-values from the Wilcoxon signed-rank test conducted for each couple of Regularised Linear
Model and MMNN on the absolute error distribution, when using only fluxomic data.
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Figure S3: p-values from the Wilcoxon signed-rank test conducted for each couple of Regularised Linear
Model and MMNN on the absolute error distribution, when using only gene expression.

Figure S4: t-SNE plots of the gene expression and fluxomic datasets (perplexity = 5). We conducted a post-
mortem analysis to understand whether the two distributions of the training and test set were
identical or not (here the split 70:30 is reported), which is the necessary condition so that our
machine learning regression models could effectively generalise to unseen data. As shown, there
is no significant distinction among the two distributions, thus reaffirming the legitimacy of our
workflow.
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Dataset Average MSE (×10−2) Average MAE (×10−2) Average R2

70:30 split

TRSC + FLUX 0.675 6.20 0.65
TRSC 0.848 6.98 0.72
FLUX 4.02 11.8 -0.33
80:20 split

TRSC + FLUX 0.688 6.21 0.71
TRSC 0.854 6.83 0.76
FLUX 4.68 12.4 -0.34
90:10 split

TRSC + FLUX 0.731 6.34 0.56
TRSC 0.785 6.90 0.76
FLUX 4.26 12.5 -0.31

Table S1: Robustness analyses for the ANN models with respect to the size of the dataset split. For each
combination model/dataset, we ran 10 training-testing runs varying the split size (70:30, 80:20,
90:10), for a total of 30 runs for each model. The results are the averaged final scores.

Dataset Average MSE (×10−2) Average MAE (×10−2) Average R2

70:30 split

TRSC + FLUX 0.640 6.02 0.70
TRSC 0.679 6.18 0.64
FLUX 1.70 9.23 0.13
80:20 split

TRSC + FLUX 0.658 6.03 0.75
TRSC 0.702 6.28 0.70
FLUX 2.00 9.97 0.24
90:10 split

TRSC + FLUX 0.707 6.24 0.60
TRSC 0.786 6.52 0.54
FLUX 2.12 10.4 -0.11

Table S2: Robustness analyses for the MMNN models with respect to the size of the dataset split. For each
combination model/dataset, we ran 10 training-testing runs varying the split size (70:30, 80:20,
90:10), for a total of 30 runs for each model. The results are the averaged final scores.
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Medium component Exchange reaction name Exchange reaction ID

ammonium ammonium exchange r 1654
sulphate sulphate exchange r 2060
biotin biotin exchange r 1671
(R)-pantothenate (R)-pantothenate exchange r 1548
folic acid folic acid exchange r 1792
myo-inositol myo-inositol exchange r 1947
nicotinate nicotinate exchange r 1967
4-aminobenzoate 4-aminobenzoate exchange r 1604
pyridoxine pyridoxine exchange r 2028
H+ H+ exchange r 1832
riboflavin riboflavin exchange r 2038
thiamine(1+) thiamine(1+) exchange r 2067
sulphate sulphate exchange r 2060
potassium potassium exchange r 2020
phosphate phosphate exchange r 2005
sulphate sulphate exchange r 2060
sodium sodium exchange r 2049
L-alanine L-alanine exchange r 1873
L-arginine L-arginine exchange r 1879
L-asparagine L-asparagine exchange r 1880
L-aspartate L-aspartate exchange r 1881
L-cysteine L-cysteine exchange r 1883
L-glutamate L-glutamate exchange r 1889
L-glutamine L-glutamine exchange r 1891
glycine glycine exchange r 1810
L-histidine L-histidine exchange r 1893
L-isoleucine L-isoleucine exchange r 1897
L-leucine L-leucine exchange r 1899
L-lysine L-lysine exchange r 1900
L-methionine L-methionine exchange r 1902
L-phenylalanine L-phenylalanine exchange r 1903
L-proline L-proline exchange r 1904
L-serine L-serine exchange r 1906
L-threonine L-threonine exchange r 1911
L-tryptophan L-tryptophan exchange r 1912
L-tyrosine L-tyrosine exchange r 1913
L-valine L-valine exchange r 1914
oxygen oxygen exchange r 1992
adenine adenine exchange r 1639
uracil uracil exchange r 2090

Table S3: List of nutrients allowed to be imported when performing flux balance analysis, together with
their corresponding exchange reactions in the iSce926 metabolic model [4]. These correspond to
commonly used media [5, 6].
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Hyperparameter Hyperparameter search space

batch size {32, 64, 128}
epochs {400, 800, 1200, 1600, 2000, 2400}
learning rate {10−2, 10−3, 10−4, 10−5}
neurons first layer range depending on the input data
neurons second layer range depending on the input data
optimiser {ADAM,SGD,RPROP,ADADELTA}
dropout {0, 0.3, 0.6}
loss {L1,MSE, Smooth L1}

Table S4: Hyperparameters spaces for the ANN explored during Random Search. For not mentioned param-
eters, default values were used.

Pathway IPF-Lasso L1 IPF-Lasso L2 pc2Lasso Group Lasso

Phenylalanine, tyrosine and tryptophan biosyn-
thesis

1.33 · 10−5 1.52 · 10−4 9.30 · 10−3 1.79 · 10−12

Phenylalanine metabolism 1.79 · 10−2 8.21 · 10−8 9.30 · 10−3

Tyrosine metabolism 4.71 · 10−2 1.52 · 10−4 9.30 · 10−3 2.74 · 10−2

Biosynthesis of amino acids 9.68 · 10−4 1.62 · 10−7

Biosynthesis of antibiotics 3.90 · 10−3 1.62 · 10−7

Biosynthesis of secondary metabolites 3.90 · 10−3 1.58 · 10−4

Cysteine and methionine metabolism 1.44 · 10−2

Aminoacyl-t RNA biosynthesis 9.30 · 10−3

2-Oxocarboxylic acid metabolism 1.45 · 10−2

Lysine biosynthesis 1.45 · 10−2

Table S5: Flux Enrichment Analyses for all the regularised linear models. For each method we display the
p-value associated to the pathway found (when present). As it can be noticed, phenylalanine- and
tyrosine-related pathways are common to almost all the methods. All the p-values are below the
defined threshold of 0.05. The results for pcLasso and the hybrid Group-IPF Lasso are not shown
since the only enriched pathway for the former was the Aminoacyl-t RNA biosynthesis, with a
p-value of 1.50 · 10−2, while the latter was enriched in Valine, leucine and isoleucine biosynthesis
with a p-value of 2.06 · 10−2.

Methods p-value

Fluxomic data

pcLasso & pc2Lasso 1.09 · 10−2

Transcriptomic data

Hybrid Group-IPF Lasso & IPF-Lasso L2 3.40 · 10−2

Hybrid Group-IPF Lasso & IPF-Lasso L1 1.79 · 10−4

IPF-Lasso L1 & IPF-Lasso L2 1.84 · 10−6

IPF-Lasso L2 & pcLasso 7.03 · 10−5

IPF-Lasso L2 & Group Lasso 1.86 · 10−2

IPF-Lasso L1 & pc2Lasso 7.26 · 10−3

pc2Lasso & Group Lasso 1.53 · 10−2

Table S6: Spearman correlation among the methods reported in Figure 2 (b), computed for the average
pathway weights. Only the statistically significant results were reported.
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