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Abstract

Synechococcus sp. PCC 7002 is a fast-growing cyanobacterium which flourishes
in freshwater and marine environments, owing to its ability to tolerate high light
intensity and a wide range of salinities. Harnessing the properties of cyanobacte-
ria and understanding their metabolic efficiency has become an imperative goal
in recent years owing to their potential to serve as biocatalysts for the produc-
tion of renewable biofuels. To improve characterisation of metabolic networks,
genome-scale models of metabolism can be integrated with multi-omic data to
provide a more accurate representation of metabolic capability and refine pheno-
typic predictions. In this work, a heuristic pipeline is constructed for analysing
a genome-scale metabolic model of Synechococcus sp. PCC 7002, which utilises
flux balance analysis across multiple layers to observe flux response between
conditions across four key pathways. Across various conditions, the detection of
significant patterns and mechanisms to cope with fluctuations in light intensity
and salinity provides insights into the maintenance of metabolic efficiency.

Introduction

Metabolism is among the most important biological processes as balancing the
production and consumption of metabolites is essential for maintaining life. Fur-
thermore, it is currently the only biological layer that can be modelled genome-
wide. Throughout the field of systems biology, there are a number of approaches
which endeavour to capture the enormous complexity of biological systems by
utilising mathematical modelling and computation to amalgamate the informa-
tion required to build and refine predictive models of metabolism. The challenges
presented by such an undertaking are numerous and persistent owing to the size,
format, scale and variation of the disparate data types.

Constraint-based reconstruction and analysis (COBRA) methods are com-
monly used to express metabolic flux through biochemical pathways based on
knowledge of reaction stoichiometry [1]. During flux balance analysis (FBA), a
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pseudo-steady state is assumed to calculate all fluxes under time-invariance and
spatial homogeneity for purposes of mass conservation. Mass-balance constraints
are imposed on the system to identify a range of points representing all feasi-
ble flux distributions. A feasible phenotypic state in the solution space is then
computed using linear programming with a set of values indicating the optimal
conditions required to achieve a given objective function [2]. FBA is particularly
suitable for modeling genome scale metabolic networks as the definition of kinetic
parameters and metabolite concentrations is not a key requisite. To improve the
characterisation of metabolic networks at the whole genome scale, genome-scale
models of metabolism can be integrated with heterogeneous multi-omic data to
provide a more accurate representation of metabolic capability. This is useful in
refining phenotypic predictions across various environmental conditions.

In recent years, genome-scale metabolic models (GSMMs) have been inte-
grated with multiple heterogeneous omic data types in a number of studies.
This serves to exploit the large volume of experimental data being generated
from high-throughput omics technologies, in order to improve the characterisa-
tion of metabolic networks at the whole genome scale. In doing so, additional
constraints can be applied during flux balance analysis in order to shrink the
solution space [3], thus providing a more accurate representation of metabolic
capability as a greater number of factors can be considered to explain cellular
behavior. This can prove useful in refining phenotypic predictions across various
environmental conditions or engineering an organism in a way that optimises
the production of a certain metabolite, which is highly applicable to fields such
as industrial biotechnology and pharmacology.

Cyanobacteria are a group of photosynthetic prokaryotes for which it is im-
perative to adapt to constant fluctuations in temperature, salinity, light intensity
(or irradiance), and nutrient availability, amongst other factors [4]. Synechococ-
cus sp. PCC 7002 is a fast-growing cyanobacterium which flourishes in both
freshwater and marine environments, owing to its ability to tolerate high light
intensity and a wide range of salinities. Harnessing the properties of cyanobac-
teria has become an imperative goal in recent years owing to their potential to
serve as biocatalysts for the production of renewable biofuels [5]. In an indus-
trial setting, Synechococcus sp. PCC 7002 has been chosen as a model organism
owing to its ease of genetic manipulation as well a tolerance for high salinity
and slightly higher temperatures; these are highly desirable traits in micro-algae
as this enables cultures to maintain a rapid growth rate in open raceway ponds
as well as in photobioreactors, which operate at higher temperatures [6]. Recent
studies have examined temporal variations in response to varying light intensity
and associated conditional dependencies [7, 8]. These need to be accounted for
as constraints in genome-scale metabolic models designed to simulate the pho-
totrophic growth in cyanobacteria over diurnal cycles and tackle issues associated
with resource allocation.
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Methods

In this work, we present a heuristic pipeline for analysing a genome-scale metabolic
model of the cyanobacterium Synechococcus sp. PCC 7002., which is detailed in
Fig 1.

(v) Multi-level optimization

(iii) Multi-layer networks

(ii) Multi-omic model
(i) Constraint-based modelling

(iv) Conditional responses
(vi) Machine learning

Fig. 1. Pipeline for prediction and classification of Synechococcus growth
conditions. (i) Stoichiometric coefficients obtained from FBA used to map flux dis-
tribution as a convex polyhedral cone; (ii) Multi-omic model of textitSynechococcus
sp. PCC 7002 produced by combining the genome-scale metabolic reconstruction with
(iii) multi-layer networks of transcriptomic and fluxomic data; (iv) Phenotypic space
depicting bacterial responses to varied conditions; (v) Utilisation of multiple objective
functions by the model (vi) Unsupervised learning (e.g. PCA) can finally be used to
detect latent patterns in unsupervised data by reducing dimensionality and identifying
key contributions to variance in datasets.

We initiated our pipeline by mapping the flux distribution for phototrophic
growth in Synechococcus sp. PCC 7002 using multi-omics flux balance analysis [9]
and building condition-specific flux profiles using METRADE [10] and starting
from a model recently published by Hendry et al [5].

Transcriptomic data was acquired in the form of RNA sequencing data from a
series of studies previously conducted by Ludwig and Bryant [11, 4, 12]. Such data
were compiled in an online repository known as Cyanomics (available at http:

//lag.ihb.ac.cn/cyanomics/)[13], an integrated omics analysis database con-
taining omic data specific to Synechococcus sp. PCC 7002. The authors con-
verted sequence data for various culture conditions to fastq format and used a
Perl script to filter out low quality reads. A Python script had also been used
to calculate the reads assigned per kilobase of target per million mapped reads
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(RPKMs) as a measure of relative transcript abundance [13]. The reads had
been mapped against the genome of Synechococcus sp. PCC using the Burrows-
Wheeler algorithm [11]. We calculated fold change values to be centered around
1 by dividing the RPKM values under these conditions by the average expression
of three standard control replicates for that gene.

These condition-specific expression profiles were loaded into the model using
METRADE [10], for which FBA was carried out using the COBRA Toolbox in
MATLAB. For the standard growth conditions, A+ medium was utilised as the
culture medium [14] with a temperature of 38◦C, continuous illumination at 250
µmol photons m−2s−1, and sparging with 1% (v/v) CO2 in air; harvestation was
performed when the optical density (OD) 730nm reached 0.7. Specific growth
conditions which deviate from the standard conditions are recorded in Table 1,
along with a reference to the original paper and the predicted biomass output.

Following this, three reactions involved in energy metabolism (ATP mainte-
nance, photosystem I and photosystem II) were selected to serve as secondary
objectives for a bi-level optimisation problem, which was formulated as follows:

max gᵀv

such that max fᵀv, Sv = 0,

vminϕ(Θ) ≤ v ≤ vmaxϕ(Θ),

(1)

where f is the primary objective function (biomass) and g is the secondary
objective function. f and g are Boolean vectors of weights selecting the reactions
in v whose flux rate will be considered as the objective. vmin and vmax are
vectors which represent the lower and upper limits for the flux rates in v for
the unconstrained model. Gene set expression of the reactions associated with
the fluxes in v are represented by the vector Θ. ϕ is a function which maps the
expression level of each gene set to a coefficient for the lower and upper limits
of the corresponding reaction, and is defined as follows:

ϕ(Θ) = [1 + γ |log(Θ)|]sgn(Θ−1)
. (2)

The flux distributions calculated for four primary reactions (ATP, Photosys-
tem II, Photosystem I and Biomass) under three pairs of objectives are detailed
in Fig 2. In order to better visualise the differences in flux between conditions,
flux values were normalised by dividing by the maximal flux for that reaction
across all conditions.

Results and Discussion

The multi-omic data used in the multi-layer network consists of gene expres-
sion profiles in the transcriptomic layer and steady state flux distributions in
the fluxomic layer. In Fig 1, the nodes in each layer represent environmental
conditions such as light intensity and salinity whereas the dashed lines represent
interactions between layers of data.
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ID Condition Condition specifics Ref. Biomass

1 Dark oxic Incubated in darkness prior to harvest, sparged in N2 [11] 14.04
2 Dark anoxic Incubated in darkness prior to harvest [11] 0.00

3 High light Illuminated at 900 µmol photons m−2 s−1 prior to harvest [11] 37.25
4 OD 0.4 Harvested at OD 730nm = 0.4 [11] 34.54
5 OD 1.0 Harvested at OD 730nm = 1.0 [11] 30.35
6 OD 3.0 Harvested at OD 730nm = 3.0 [11] 28.18
7 OD 5.0 Harvested at OD 730nm = 3.0 [11] 30.73
8 Low O2 Sparged in N2 [11] 42.64
9 Low CO2 Sparged with air [0.035% (v/v) CO2] [12] 17.85
10 N-limited Cells washed in medium A (lacking NO3-) and resuspended [12] 9.59
11 S-limited Cells washed with MgCl2 [12] 9.53

12 PO4-limited Cells washed w/o (PO3−
4 ), allowed to grow to OD = 0.7 until harvestation [12] 0.00

13 Fe-limited Cells washed in medium A with 720 µM deferoxamine mesylate B added at OD 0.35 [12] 21.65
14 NO3- Standard growth in medium A (lacking NaNO3) with 25 mM HEPES, 1 µM NiSO4, 12 mM NaNO3 [12] 20.36
15 NH3 Standard growth in medium A (lacking NaNO3) with 25 mM HEPES, 1 µM NiSO4 and 10 mM NH4Cl [12] 23.91
16 CO(NH2)2 Standard growth in medium A (lacking NaNO3) with 25 mM HEPES, 1 µM NiSO4 and 10 mM CO(NH2)2 [12] 31.04
17 Heat Shock 1h heat shock at 47◦C [4] 0.00
18 22◦C Standard growth at 22◦C [4] 35.10
19 30◦C Standard growth at 30◦C [4] 36.26
20 Oxidative stress 5 µM methyl viologen added for 30 minutes prior to harvestation [4] 33.55
21 Mixotrophic Medium A+ supplemented with 10 mM glycerol [4] 0.00
22 Low salt Medium A+ containing 3 mM NaCl and 0.08 mM KCl [4] 0.00
23 High salt Medium A+ containing 1.5 M NaCl and 40 mM KCl [4] 33.64

Table 1. Growth and stress conditions for Synechococcus sp. PCC 7002.
We map the flux distribution for phototrophic growth in Synechococcus sp. PCC 7002
using multi-omics flux balance analysis [9]. We then build condition-specific models
starting from a model recently published by Hendry et al (2016) [5], and predict the
biomass (growth rate, h−1) in all experimental conditions. The unconstrained model
representing the optimal growth condition produced 44.04 h−1 of biomass.
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From the transcriptomic studies listed, there are a number of genes which
were not transcribed in the controls but specifically transcribed under perturbed
conditions. Many of these genes have yet to be assigned a particular functional
category or encode hypothetical proteins, but many more have been linked to
specific pathways and compounds and some have been associated with the adap-
tation of Synechococcus sp. PCC 7002 to atypical environmental or growth con-
ditions. The unconstrained model (simulating an optimal growth condition) pro-
duces 44.04 h−1 of biomass. Therefore, FBA correctly predicts reduced growth
in sub-optimal conditions. Some growth is still maintained in some harsh con-
ditions, although severely impaired or null under the dark anoxic, heat shock,
phosphate-limited, mixotrophic and low salt conditions. More specifically, in-
ducing a heat-shock response triggers transcriptional activation of heat shock
proteins and alternative mechanisms to ensure survival when the main biomass
production pathways are inhibited [15].

Although a large number of studies express the maximisation of biomass
as the only objective when performing FBA, it is imperative to recognise that
in reality most organisms have multiple objectives to satisfy. The addition of
multi-level optimisation to our pipeline enables the consideration of more than
one objective function and expands the phenotypic solution space so that there
are a greater number of feasible optimal points. Specifically, when calculating the
flux distribution across conditions, biomass was chosen as the primary objective
and the secondary objective set to ATP maintenance, photosystem I and pho-
tosystem II. Biomass was chosen to represent the maximisation of growth rate
and cellular yields [16], which is a critical consideration for the production of
biofuels by cyanobacteria as this informs the substrate uptake rates and mainte-
nance requirements indicating the fundamental growth requirements of the cell.
The secondary objectives are key pathways involved in energy metabolism during
photosynthesis. Simulating the cost of ATP maintenance can help to examine the
energy required for sustaining metabolic activity even in the absence of growth.
Incorporation of the photoexcitation reactions occurring within photosystems I
and II can characterise how flux under various conditions reflects the light har-
vestation and energy transfer via photon absorption through these complexes.
Thus, solving the linear programming problem between multiple pairs of objec-
tives helps to resolve trade-offs by considering the conditions and constraints
affecting each of these objectives.

Fig 2 predicts that the biomass flux through Conditions 1-23 are always lower
than in Condition 24, the standard control. In Fig 2, we show that when ATP is
set as the secondary objective, the highest fluxes through the ATP maintenance
reaction are among conditions which limit growth such as dark anoxic (608.5),
mixotrophic (1000), low salinity (1000) or nutrient limitations (ranging from
323.95 to 1000 for nitrogen, sulfur, phosphate and iron-limited conditions). It
is likely that this is in order to maintain minimal cellular function when there
is no growth (no flux through the biomass pathway) or energy transfer through
the photosystems. Lack of light is likely to be a greater contributory factor to
decrease in growth as low oxygen concentration does not seem to stunt growth,
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Fig. 2. This figure shows flux distributions for four key reactions: ATP maintenance,
photosystem I, photosystem II and biomass when running FBA using three different
pairs of objectives (where f = biomass, g = ATP/Photosystem I/Photosystem II).
Conditions 1-23 correspond to those detailed in Table 1; Condition 24 is the standard
control. Flux values were normalised by dividing by the maximal flux in each reaction
across all conditions.
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seeing as the proportional decrease in biomass is low relative to the standard
control conditions. On the other hand, there appears to be little to no flux for
either the biomass or photosynthetic pathways in the dark anoxic condition.
This is supported by Vu et al (2013) [17], which states that lower yields under
dark conditions may be due to the limited generation of energy (ATP) and
reductant (NADPH) from glycogen in the absence of photoautotrophic growth.
Equal reduction in transcript levels for photosynthetic apparatus was previously
observed in all macronutrient-limited conditions studied [12]. We surmise that
phosphate limitation has the greatest effect as there is no biomass production
across any of our objectives for this condition. This is in line with the findings
of Ludwig and Bryant (2012) [12], where perturbations caused by phosphate
limitation had a greater impact on the global transcription pattern than observed
for high irradiance or dark treatments of Synechococcus sp. PCC 7002.

Synechococcus sp. PCC 7002 is known to possess one of the greatest tol-
erances for high light intensity among cyanobacteria (with an upper limit of
approximately 2000 µmol photons m−2 s−1) [18]. This is evident from our pre-
dictions for all three pairs of objectives, where flux through the biomass pathway
during high light intensity is only slightly lower than the control condition (37.25
compared to 44.04), even though we observed flux under light intensity of 900
µmol photons m−2 s−1. Although fluxes through photosystem II are disrupted,
fluxes through photosystem I are still maintained (80.11 in the high light in-
tensity condition as opposed to 250 in the control). Heat shock results in weak
fluxes through both photosystems for all three objective pairs and triggers flux
through the ATP maintenance reaction when it is set as an objective, presum-
ably to retain cellular function. It was reported by Ludwig and Bryant (2012)[4]
that transcript levels for genes encoding photosystem I decreased slightly in cells
grown at high salinity and remained constant at low salinity; on the other hand,
it was found that transcript levels for genes encoding photosystem II did not
change in response to fluctuations in salinity. For the high salinity condition, we
have observed that fluxes through biomass and photosystem I remain high for
our three objective pairs, whereas flux is only maintained in the low salinity con-
dition for the reaction set as the secondary objective g. However, flux through
photosystem II for the low salinity condition (250.00) is much higher than flux
for the high salinity condition (24.06) when the reaction for photosystem II is
set as the secondary objective, and there is no flux through the photosystem II
reaction in the control condition.

Conclusions

Complex metabolic and phenotypic outcomes as a result of adaptation to a
changing environment are difficult to predict from gene expression only. The
unified measure of bacterial responses computed by the condition-specific models
allows for the detection of coordinated responses shared between different data
types as well as the variation in responses across differing growth conditions.
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In this work, a heuristic pipeline was constructed for analysing a genome-
scale metabolic model of the cyanobacterium Synechococcus sp. PCC 7002, which
utilises flux balance analysis to obtain flux distributions with multi-level optimi-
sation using linear programming. The four reaction fluxes obtained show clear
differences in pathway activity across the various conditions and also between the
three pairs of objectives used. This enables the detection of latent, biologically
significant patterns and adaptive mechanisms to fluctuations in light intensity
and salinity. The aim is to elucidate how Synechococcus maintains metabolic ef-
ficiency at the cellular level whilst assessing multiple cellular objectives. Consid-
ering the vast dimensionality of multi-omic models, the identification of biolog-
ically meaningful information can prove to be challenging. As a non-parametric
statistical technique, principal components analysis (PCA) can be incorporated
into our workflow for identifying patterns in metabolic fluxes within multi-omic
models [19].

In this regard, this study integrates transcriptomics with metabolomics and
elucidates the unique mechanisms utilised by Synechococcus sp. PCC 7002 to
adapt to changes in light intensity and salinity to maintain metabolic efficiency
for phototrophic growth and light-dependent photosynthesis in a multi-omic
fashion. As a result, by predicting and classifying its metabolic profiles in such
growth conditions, our approach sheds light on the adaptation process undergone
by the cyanobacterium to enable its survival across a wide range of environments
and stress conditions.
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