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A design automation framework for computational
bioenergetics in biological networks†

Claudio Angione,*a Jole Costanza,b Giovanni Carapezza,a Pietro Lióa and
Giuseppe Nicosiab

The bioenergetic activity of mitochondria can be thoroughly investigated by using computational

methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the

production of energy in the cell. We develop a computational framework to perform an exhaustive

investigation at the level of species, reactions, genes and metabolic pathways. The framework integrates

several methods implementing the state-of-the-art algorithms for many-objective optimization, sensitivity,

and identifiability analysis applied to biological systems. We use this computational framework to analyze

three case studies related to the human mitochondria and the algal metabolism of Chlamydomonas

reinhardtii, formally described with algebraic differential equations or flux balance analysis. Integrating

the results of our framework applied to interacting organelles would provide a general-purpose method

for assessing the production of energy in a biological network.

1 Introduction

Mitochondria are the organelles of the eukaryotic cells that play a
pivotal role in the bioenergetics and regulation of many signaling
pathways. They are also fundamental for the evolution of complex
organisms. Specifically, mitochondria are optimized symbiotic cells
useful to produce energy while simultaneously being energy-saving
organelles. As a result, eukaryotic cells are able to synthesize more
proteins than prokaryotic cells (such as bacteria). Recent studies
confirmed that mitochondria descend from bacteria, and indeed
they lived outside the cell.1 During the evolution, mitochondria
entered the animal and plant cells.2

Mitochondria are important firstly for their energy productivity:
they are the energy source of the cell, since they synthesize
adenosine triphosphate (ATP), the chemical energy in the cell.
Moreover, the mitochondrion is the site of carbohydrate meta-
bolism, fatty acid oxidation and the urea cycle.

The expansion of the fields of mitochondria and other
mitochondrion-like organelles is mainly due to the identifi-
cation of the pivotal role that mitochondria play in human
disease and ageing,3 to the synergy showed by chloroplasts and
mitochondria in energy output,4 and to the discovery of novel
factors involved in organelle division, movement, signaling and

adaptation to varying environmental conditions.5 Biomarkers
for these events have been recently identified through integrative
network biology.6 In a network of organelles,7 the study of the
effects that all these conditions may have on each organelle
(thought of as a submodule of the network8), and then on the
whole network, lies in the field of differential network biology.9

Interestingly, there are no known examples of eukaryotes lacking
a mitochondrion-related organelle.10

In the carbohydrate metabolism, the pyruvate produced
from glycolysis undergoes oxidative decarboxylation to give
acetyl CoA, which is then oxidized in an eight-step process
known as the tricarboxylic acid (TCA) cycle. The respiratory
substrates NADH and FADH2 generated through the TCA cycle
are then oxidized in a process coupled with ATP synthesis.
Electrons are transferred from NADH and FADH2 to oxygen via
enzyme complexes located on the inner mitochondrial membrane.
Three of the electron carriers (complexes I, III and IV) are proton
pumps, and couple the energy released by electron transfer with
the translocation of protons from the matrix side to the external
side of the inner mitochondrial membrane. The energy stored in
the resulting proton gradient (i.e., the proton-motive force) is used
to drive the synthesis of ATP via the mitochondrial enzyme ATP
synthetase (complex V). Under certain conditions (e.g. fasting),
acetyl CoA molecules are converted into ketones for use as an
alternative energy source (fatty acid oxidation). In the urea cycle,
amino acid degradation resulting in excretion of nitrogen as urea
occurs partly in the mitochondrion.

Additionally, the mitochondrion is also essential for several
other processes, including the regulation of calcium homeostasis
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and other inorganic ions, cellular differentiation, cell death
(apoptosis), as well as for the control of the cell cycle and cell
growth.11 The number, the size and the shape of mitochondrion
in a cell change depending on the tissue. For example, in the
cardiac muscle, when the primary role of the heart is to pump
blood, the cells have a large number of mitochondria and a large
size. Mitochondria have also been detected as responsible for
several human diseases, including mitochondrial disorders,
cardiac dysfunction, and type 2 diabetes.12 The mitochondrion
plays a crucial role also in cancer and in neurodegenerative
disorders (such as Parkinson’s, Alzheimer’s or ALS).

For these reasons, many researchers focused their attention
on mitochondrial analysis, developing mathematical models
that can simulate its activity, and in particular the oxidative
phosphorylation. In the recent work by Bazil et al.,13 73 algebraic
differential equations are implemented to model the mitochondrial
bioenergetics, including 34 biochemical reactions. We perform an
in silico analysis on this model in order to find the metabolites
that are the most important for optimizing the energy productivity,
i.e., for maximizing ATP and NADH production in matrix space.
We conduct five different studies with five different matrix
calcium concentrations. As introduced above, mitochondria
regulate calcium homeostasis, which is strictly linked to ATP
and NADH production.14

The mitochondrial model was also set to simulate the cancer
state. Specifically, we modified three features that have been found
to vary between healthy and cancer conditions: (i) hexokinase
activity, (ii) membrane potential differential, and (iii) concentration
of hydrogen ions. The model includes kinetic parameters useful to
mimic regulatory effects such as activation of enzymes by protein
kinases. Therefore, it describes in a detailed way many features of
the biochemical reaction and enzymatic action. On the other hand,
this complex mathematical description introduces some limits:
(i) the number of reactions is small, therefore the complexity
of the complete network is not captured; (ii) solving the set of
DAEs requires more computational effort, and solvers can only
compute approximations that may not fully agree with the real
behavior of the system.

For these reasons, in our work we take into account also a
mitochondrial model realized with flux balance analysis (FBA),
where the system is described considering a steady state for all
the metabolites involved in the network.15 The model is
composed of a set of algebraic equations and does not contain
kinetic parameters. This approach permits us to handle large
metabolic networks (more than 2500 reactions, 2000 metabolites
and 1400 genes). The FBA mitochondrial model here considered is
composed of 423 reactions (including transformation reactions
and transport reactions between compartments, and those
between internal and external environments) and 228 metabolites.
The computational time to solve the problem with FBA is highly
reduced. In our analysis we include also another FBA model,
namely the alga Chlamydomonas reinhardtii, containing also the
mitochondria organelle compartment.

In this work, we propose a methodology suitable for evolu-
tionary single- and many-objective optimization in biological
models. We apply our pipeline to three case studies: the algal

FBA model, the mitochondrial FBA model, and the mitochondrial
DAEs model. The systematic analysis of the Pareto surface
emerging from the biological system can be performed by
evaluating the sensitivity of its components, and the functional
relations inferred from its constraints. To this end, we adopt
sensitivity and identifiability analyses. Our methodology can be
used to tackle FBA, GPR, and systems of ODEs, and also to
optimize reaction fluxes and gene sets simultaneously.

2 Many-objective concurrent optimization
of biological models

A trade-off between multiple tasks performed by a biological
organism can be reached using a multi-objective optimization
algorithm. Given r objective functions f1,. . ., fr to be maximized,
seeking the optimal array means solving the problem maxx( f1(x),
f2(x),. . ., fr(x))T, where x is the variable in the search space. (The
same definition can also be adopted when minimizing a func-
tion, taking into account that minimizing fi is equivalent to
maximizing �fi). The Pareto front is defined as the set of non-
dominated points. A solution y* is said to be non-dominated if
there does not exist a point y such that f ( y) dominates f ( y*).
Formally, y* is Pareto optimal if 9= y s:t:fiðyÞ4 fiðy�Þ 8i ¼ 1; . . . ; r,
where f is the vector of r objective functions that have to be
maximized.

For instance, a bacterium can use the Pareto-front to maximize
simultaneously two or more requirements. A point in the objective
space can be regarded as the phenotype associated with a point in
the variable space (the genotype). As a result, the Pareto front is
the set of all the phenotypes that remain after eliminating all the
feasible phenotypes dominated on all tasks.16

Case study 1: FBA algal mitochondria

In this first case, we take into account the flux balance analysis
model of C. reinhardtii that contains reactions related to the
mitochondrial compartment. The model includes 2188 reac-
tions, 1706 metabolites, 718 gene sets and 112 pathways. Out of
2188 reactions, 164 are mitochondrial reactions. By using a
multi-objective optimization algorithm,17 we maximize ATP
and NADH production. In order to measure ATP and NADH
production, we add two reactions representing the transport of
ATP and NADH from the matrix to the external environment. In
this way, we can calculate their rate in the FBA framework. The
aim is to find the optimal genetic strategies for increasing the
algal bioenergetic yield.

Genetic strategies stand for knockout operations. A gene is
knocked out if it cannot be expressed. Therefore, the gene is
neither transcribed to mRNA nor translated to peptide. Accordingly,
the enzymes that under natural conditions are synthesized by that
gene are not present in the cell, and the corresponding reactions do
not occur. Knockout strategies are represented in the model
through a knockout vector y. Each element of y represents a gene
set. The gene set yl can be expressed if yl = 0, otherwise yl = 1. The
gene sets are constituted by one or more genes related by a Boolean
relationship. Each gene set is linked to the reactions in the
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metabolic network by a gene-reaction mapping. For instance,
the gene set ‘‘geneA OR geneB’’ involving the two genes geneA
and geneB is linked to the reaction reactionAB. The reaction
reactionAB takes place if at least one of the two genes is present
and expressed in the network. Each gene set can be linked to
one or more reactions.

Searching for the best genetic strategies means searching for
the best knockout vector ỹ that maximizes ATP and NADH
production. The constraint-based combinatorial optimization
problem has therefore two objective functions: ATP and NADH
production. Constraints include (i) thermodynamics bounds of
the reactions of the metabolic networks, (ii) knockout bound,
i.e., the maximum number of genes that can be turned off,
and more significantly (iii) a nested biomass maximization
problem.18 The biomass maximization is a constraint of the
problem.

In our experiment, we set the maximum knockout number
equal to 10. The result of the optimization is shown in Fig. 1.
Since ATP and NADH production are conflicting objectives, we
obtain a set of optimal solutions constituting the Pareto front.
From the Pareto front, we can choose the best trade off design
according to function values, knockout cost and robustness
indices.17 The black point in Fig. 1 corresponds to the wild type
condition, i.e., when all genes of the metabolic network can be
expressed.

Case study 2: mitochondrial FBA model

The FBA mitochondrion model20 contains 423 reactions and
326 metabolites. As in the previous case study, by using a multi-
objective optimization algorithm we maximize ATP and NADH
production. In order to measure the matrix NADH productivity,
we add a reaction that represents the transport of NADH from
the matrix to the external environment. In this way, we can
calculate the rate of NADH production in the FBA framework.
The aim is to find the optimal environment for mitochondria
so as to increase their bioenergetic yield. The decision variables
are the 73 uptake fluxes. We search for the best values of uptake

rate flux, whose maximum value is 1000 mmol h�1 gDW�1. The
optimization finds a single Pareto point that reaches the
maximum amount of ATP (1000 mmol h�1 gDW�1), without
NADH production. In another optimization experiment, we
maximize ATP production and simultaneously minimize NADH
production (Fig. 2). We observe that ATP production grows
more rapidly than NADH consumption.

We initialize the input fluxes of the mitochondrial model
as described in the work by Smith et al.20 Under these condi-
tions (before the optimization), the ATP production is equal
to 139.4264 mmol h�1 gDW�1, while NADH is totally con-
sumed in the metabolism, and the productivity is equal to 0.
After the optimization, the maximum ATP production is
929.0940 mmol h�1 gDW�1 corresponding to an NADH con-
sumption of 67.62 mmol h�1 gDW�1. By considering this
optimal Pareto solution and comparing the initial state (before
the optimization) with the optimal state (maximum ATP
production), we remark that ATP and NADH increase when
the uptake rates linked to (R)-3-hydroxybutanoate, isocitrate,
a-D-glucose, citrate and oxygen increase (Fig. S1 in ESI†).
Indeed, the oxygen is the variable that changes more, from
19.8 mmol h�1 gDW�1 to 143.17 mmol h�1 gDW�1. Therefore,
the oxygen is the element that plays a major role in ATP and
NADH production in mitochodria. This result is recurrent in
biological experiments, and thus validates our analyses.

In this experiment, the optimization does not consider the
limitation of substrates (as glucose or oxygen) in the biological
environment, so we consider our approach as an asymptotic
analysis for investigating the potentiality of mitochondria.
Indeed, the optimization algorithm searches for the optimal
environmental conditions without considering that the glucose
and the other elements of the environment in a real cellular
context can be limited. Each uptake flux can reach the upper
bound value, i.e. 1000, which is usually not feasible. In a real
context, such as that of a cell, glucose availability is in fact limited.

Fig. 1 Genetic strategies search in Chlamydomonas reinhardtii.19 In red, the
Pareto optimal points and, in black, the wild type solutions. Genetic strategies are
knockout operations, useful to maximize the bioenergetic yield.

Fig. 2 Effect of the genetic algorithm on the Pareto front when optimizing ATP
and NADH in the FBA mitochondrial model.20 This Pareto front has been
obtained with 100 individuals and halted at the 900th generation. We optimized
the uptake rate fluxes (73 exchange fluxes) to maximize the energy. The
algorithm was set in order to search for the environmental conditions to optimize
the objective functions.
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For this reason, we consider this experiment as a theoretical
study that helps evaluate how the system behaves when it wants
to increase ATP and NADH.

In a second experiment, in order to include in our optimiza-
tion the limited availability of elements of the environment, we
change the upper bound of each variable or uptake flux. In this
way, we are modeling a real context, i.e., an environment where
glucose, lactate and other elements are present in a limited
amount. In the original work,20 the maximum uptake rate of
the fluxes was limited as follows: oxygen to 19.8, arginine to
0.0068, lysine to 0.0298, proline to 0.0044, aspartate to 0.1524,
a-D-glucose to 0.9000, (R)-3-hydroxybutanoate to 0.7000, isoleucine
to 0.0039, valine to 0.0106, hexadecanoic acid to 1.0000, (S)-lactate
to 0.5750, HCO3

� to 0.0198. These values have been validated
using experimental data.20 In this second experiment, we only
optimize the twelve fluxes cited above. Additionally, for each
variable, the domain space is constrained between 0 and +33%
of the maximum uptake rate used by the authors and reported
above. Under these conditions, NADH production does not
increase. Specifically, we observe a consumption of NADH (negative
values in Fig. S2, ESI†). ATP increases and, by considering only
the solutions such that NADH is positive, we find ATP =
185.4299 mmol h�1 gDW�1. The optimization algorithm here used
is the Non-dominated Sorting Genetic Algorithm II, also known as
NSGA-II,21 and described in depth in the following section.

Case study 3: mitochondrial DAEs model

Using the Non-dominated Sorting Genetic Algorithm II, also known
as NSGA-II,21 we optimize multiple energy-related objectives. The
model we adopt here consists of 73 differential-algebraic equations
(DAEs) to model the mitochondrial bioenergetics.13 In particular,
the model accounts for 35 biochemical reactions, including the
oxidative phosphorylation, the electron transport system, the
tricarboxylic acid cycle and related reactions, the Na+–Ca2+ cycle
and the K+-cycle. As in the previous case studies, we maximize the
production of adenosine triphosphate (ATP) and nicotinamide
adenine dinucleotide (NADH).

The variable space is defined as the space of feasible initial
concentrations of 50 metabolites. The population is initialized
in a random way and, for each individual of the population, the
fitness score is computed. The fitness score is calculated
according to the values of the objective functions. An individual
of the population is preferred to another (has a better fitness
score) if its objective functions are larger in a maximization
problem or smaller in a minimization problem. The fitness
score is also called rank. An individual is a feasible vector of
concentrations of metabolites. Each individual is assigned a
rank, and between two solutions with different non-domination
ranks, the one with the lowest rank is preferred. After sorting
the individuals according to the level of non-domination, the
fitness score of each individual is computed by evaluating the
objective functions associated with it.

The algorithm is based on non-domination ranking and
crowding distance. The algorithm ranks the candidate solutions
using the constrained non-dominated criteria. The non-dominated
front is generally assigned a rank of one. Similarly, the second

non-dominated front (the non-dominated front that would be
detected after the removal of all the points of the non-dominated
front) has a rank of two and so on. The candidate solutions with
lower rank are the best candidates to be selected for the next
generation. The lower the non-domination rank of a candidate
solution is, the better it is. If two candidate solutions have the
same non-domination rank, the algorithm prefers the candidate
solution with the smaller crowding distance.

Successively, three steps are carried out iteratively: (i) in a
binary tournament selection process, two individuals are
selected at random, their fitness is compared and the individual
with the best fitness is selected as a parent for the next population;
(ii) the algorithm selects a number of new parents (i.e., the best
individuals) equal to the half of the population, and then mutates
them using a mutation operator and a crossover operator; (iii) a
new population of the same size of the initial population is formed
by selecting only the best individuals from the parents and the
offspring. By using the mutation operator, one individual of the
population is selected randomly, and a random set of its
elements is mutated. Instead, by using the crossover operator,
two individuals of the population are chosen and their elements
are crossed to form a new individual.21 Each individual of the
final population in the variable space corresponds to a point of
the Pareto front in the objective space.

Before the optimization, at the fully oxidized state we obtain
NADH = 1.5987 � 10�10 nmol mg�1 (formation) and ATP =
�0.0014 nmol mg�1 (consumption). After the optimization, we
obtain the Pareto-optimal points shown in Fig. 3.

Finally, we analyze more thoroughly two particular Pareto-
optimal solutions, i.e., the point with maximum ATP synthesis
(and lower NADH formation) and the point with maximum
NADH formation (and lower ATP synthesis). By maintaining
Ca2+ fixed at 10�5 nmol mg�1, after the optimization the first
solution provides NADH = 6.17 � 10�15 nmol mg�1 and ATP =
2027.34 nmol mg�1, with overproduction of SUCmtx, SCoAmtx,
CoASHmtx, Hmtx

+ and ATPims (ims = inter-membrane space,
mtx = matrix) and under-production of ISOCmtx, aKGmtx,
MALmtx, CITims, ISOCims, aKGims, SUCims, MALims and GLUcyt,
ASPcyt (cyt = cytosolic space).

The second solution provides NADH = 6.07 � 10�6 nmol mg�1

and ATP = �3734.6 nmol mg�1 (consumption), over-producing the
following metabolites: Hmtx

+, ISOCmtx, SUCmtx and ATPims, whereas
CITmtx, MALims and AMPims, PYRims, GLUims,cyt and aKGims are
totally consumed.

If the matrix calcium content is maintained fixed or
increased from 10�5 to 10�4 nmol mg�1, the ATP synthesis
and NADH formation stop, and both molecules are consumed
by the metabolism (see Fig. 3, red signs). This experiment can
demonstrate that a perturbation in mitochondrial Ca2+ homeostasis
has major implications for cell function at the level of ATP synthesis
and NADH generation.

If Ca2+ increases to 1.5 � 10�5 nmol mg�1, the NADH
formation increases, while ATP decreases (see Fig. 3, green
signs). We have also performed other two experiments, decreasing
Ca2+ to 10�6 nmol mg�1 (see Fig. 3, blue circles) and to 10�5/
1.5 nmol mg�1 (see Fig. 3, green circles).
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For the cancer studies, we focused the analysis on mito-
chondrial activity and its role in cancer diseases. In a first step,
our objective is to maximize the mitochondrial bioenergetics
(ATP and NADH contents) in order to estimate the mitochondrial
dynamics under cancer conditions. We simultaneously maximized
ATP and NADH production by varying the initial conditions
(the initial metabolites contents) used to solve the DAEs system.
In particular, we varied the initial conditions for 50 metabolites
(the decision variables), while maintaining at the physiological
concentration the following: (1) matrix water volume, (2) inner
membrane space water volume, (3) matrix free chloride, (4) total
matrix ATP, (5) total matrix ADP, (6) total matrix GTP, (7) total
matrix GDP, (8) total matrix NADH, (9) total matrix NAD,
(10) total mitochondrial ubiquinol, (11) total mitochondrial
ubiquinone, (12) total CO2 matrix, (13) total O2 matrix, (14)
inter membrane space (IMS) free proton, (15) IMS free potassium,
(16) IMS free magnesium, (17) IMS free calcium, (18) IMS free
sodium, (19) total IMS cytochrome c2+, (20) total IMS cytochrome
c3+. In addition, to simulate the cancer environment, we changed
the initial condition for (i) the mitochondrial membrane potential
DF, (ii) the total extra-mitochondrial glucose-6-phosphate content
(G6P) and (iii) the extra-mitochondrial free proton content (H+).
We fixed DF = 2 mV, G6P = Vcyt � 106 nmol mg�1 and H+ = Vcyt �
10�5 nmol mg�1. In the healthy state, DF = 1 mV, G6P = Vcyt �
1012 nmol mg�1 and H+ = Vcyt � 107 nmol mg�1, where Vcyt is the
water volume in cytosolic space.

In a second step, we used the same design to minimize ATP
and NADH when the mitochondrion is under cancer conditions
in order to find the variables playing a crucial role in eliminating
the cancer cells. The results of the optimization are shown in
Fig. 4. With respect to the state where no ATP is available in the
matrix, the abuse of notation of a negative concentration in the
model can be thought of as the change in ATP concentration
needed to produce the corresponding NADH. Using our method

we can distinguish between healthy and pathological states. The
red and green regions represent, respectively, the pathological
and healthy state in mitochondria during the production of ATP
and NADH. The purple region represents the apoptosis state of a
cell under cancer conditions, i.e., when mitochondria are not
able to produce bioenergy. The black line marks the Pareto
optimal solutions. In the cancer experiments, the initial Ca2+

concentration used in all the simulations is 10�5 nmol mg�1.

3 Sensitivity analysis

Sensitivity analysis allows us to rank inputs of the model
according to their influence on the output. The parameters of
a metabolic network can be reactions, enzymes, genes, pathways
and metabolites. Ranking these elements can be very useful in
that, for instance, once the most sensitive parameters are
selected, one can focus its analysis on the features of the model
related to these parameters.

By considering the model of the algal metabolism of
Chlamydomonas reinhardtii,19 and the DAEs13 and the FBA20

model of the mitochondrial metabolism, we calculated the sensi-
tivity indices, respectively, for the uptake reactions, for the meta-
bolites and for the inner matrix reactions. We used and
implemented the method by Morris22 for analyzing the uptake
reactions in C. reinhardtii and the metabolites involved in the
DAEs mitochondrial network.13 The Morris method calculates
the effect of the perturbation on a parameter s, estimating the
distribution of elementary effects EEs. The mean m* and standard
deviation s* of the distribution indicate how the parameter
should be considered important. A large (absolute) central ten-
dency for EEs indicates an input with an important overall
influence on the output. A large spread indicates an input whose
influence is highly dependent on the values of the inputs.22

To evaluate the perturbations on the inner matrix reactions
of the FBA model,20 we implemented a new method, inspired

Fig. 3 ATP and NADH production maximization in the mitochondrial DAEs
model.13 We varied the initial concentrations of 55 metabolites and solved the
system of DAEs. We simulated five differential states based on the concentration
of calcium in the matrix: the standard concentration (10�5 nmol mg�1),
two increments of the standard concentration (10�4 nmol mg�1 and 1.5 �
10�5 nmol mg�1) and two decrements of the standard concentration
(10�6 nmol mg�1 and 10�5/1.5 nmol mg�1).

Fig. 4 ATP and NADH production maximization and minimization in the mito-
chondrial DAEs model.13 The regions define the states of mitochondria under
different conditions. The red region represents the pathological state (cancer
conditions), while the green zone the healthy state. In purple we show the
mitochondrial pathological state with the minimization of ATP and NADH
production, i.e., during the cellular apoptosis. Pareto fronts are in black.
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by Morris,22 that perturbs each parameter and considers only
the feasible solutions. Indeed, the FBA approach considers
constraint-based models, and the perturbation of inner matrix
reactions is not always allowed. The output considered in our
analysis is the vector of output fluxes for FBA models, and the
curves of integration for the DAEs model.

In Fig. 5 and Fig. S5 (ESI†), we show, respectively, the results of
the sensitivity analysis for the FBA model and the DAEs model of the
mitochondrion. In the first case, the saccharopine dehydrogenase
reaction is the most sensitive, followed by ornithine aminotransferase,
glycine C-acetyltransferase and 3-hydroxyacyl-CoA dehydrogenase. In
the second case, the initial concentrations of the metabolites are
taken into account. Only the initial concentration variations of the
extra-mitochondrial glc6phosphate, extra-mitochondrial fumarate,

inner-membrane aspartate, inner-membrane citrate, inner-
membrane AMP and inner-membrane fumarate do not affect
the output, unlike all the others, which have a large influence.

Fig. 5 Sensitivity analysis results for the FBA mitochondrial model.20 We report
the two sensitivity indices for each of the 135 internal reactions. The larger is the
value of the two indices, the larger is their influence of the corresponding
reaction on output of the model. On the key, only the most sensitive reaction
IDs are reported. The labels on the key are sorted according to sensitivity ranking.
For a detailed description of the key, see the work by Smith et al.20

Fig. 6 Sensitivity analysis applied to the photosynthetic algal metabolism of
C. reinhardtii.19 We calculate the sensitivity of the uptake rate fluxes on the
output of the model. As shown in the plot, the photon uptake rate is the most
sensitive flux. The labels on the key are sorted according to the sensitivity ranking.

Table 1 Identifiability analysis applied to the 100 non-dominated points of the
ATP–NADH Pareto front with a standard amount of calcium. The initial concentra-
tions of the 55 metabolites are grouped according to functional relations. The value
of r2 is an indicator of the amount of variance of the response explained by the
predictors. A large ratio cv(x) = std(x)/mean(x) indicates that the data are scattered,
thus suggesting practical non-identifiability. ‘‘n.a.’’ stands for ‘‘not available’’, when
metabolites do not play any role in the two-objective maximization of ATP and
NADH. An asterisk is added when r2 > 0.9 and cv > 0.1. Two asterisks indicate a
strong interdependence between variables, i.e. the same functional group has been
detected even if the role of response and predictors is switched

Variable Metabolite Metabolite groups r2 cv

x1 Hm x1,x39* 0.956 1.855
x2 Km x2,x53* 0.931 0.305
x3 Nam x3* 0.975 0.407
x4 Mgm x4,x33 0.941 0.094
x5 Pim x5 0.986 0.008
x6 CITm x6,x26* 0.938 0.382
x7 ISOCm x7,x33** 0.974 0.921
x8 aKGm x8,x37* 0.937 1.868
x9 SCoAm x9,x37* 0.942 1.181
x10 SUCm x10* 0.989 0.379
x11 FUMm x4,x11,x15* 0.976 1.193
x12 MALm x12,x45* 0.971 0.375
x13 OAAm x13* 0.993 1.503
x14 GLUm x7,x14* 0.914 0.421
x15 ASPm x1,x15* 0.967 0.166
x16 PYRm x1,x16,x47* 0.969 0.673
x17 AcCoAm x17,x53,x54* 0.982 0.861
x18 CoASHm x18,x28** 0.957 0.176
x19 Him n.a. n.a. n.a.
x20 Kim n.a. n.a. n.a.
x21 Naim n.a. n.a. n.a.
x22 Mgim n.a. n.a. n.a.
x23 Caim n.a. n.a. n.a.
x24 ATPim x24,x52** 0.971 0.413
x25 ADPim x25,x26* 0.979 0.917
x26 AMPim x26,x43* 0.980 0.883
x27 Piim x26,x27* 0.975 0.868
x28 PYRim x18,x28** 0.957 1.353
x29 CITim x18,x29,x43* 0.981 0.715
x30 ISOCim x30* 0.985 1.418
x31 aKGim x6,x17,x31* 0.982 0.350
x32 SUCim x32,x47* 0.978 0.690
x33 FUMim x7,x33** 0.974 0.929
x34 MALim x34* 0.991 0.394
x35 GLUim x35* 0.990 0.545
x36 ASPim x33,x36 0.897 2.030
x37 Kc x8,x26,x37* 0.985 0.357
x38 Nac x38,x45** 0.951 0.326
x39 Mgc x9,x39* 0.973 0.750
x40 Cac x40* 0.980 0.368
x41 ATPc x41 0.972 0.018
x42 ADPc x42* 0.988 1.289
x43 AMPc x26,x43,x53* 0.990 0.827
x44 Pic x28,x44 0.960 0.014
x45 CITc x38,x45** 0.951 0.390
x46 ISOCc x46* 0.984 0.384
x47 aKGc x24,x32,x47* 0.986 1.112
x48 SUCc x48* 0.977 2.261
x49 FUMc x14,x49* 0.941 0.408
x50 MALc x25,x31,x50* 0.983 0.957
x51 GLUc x2,x51* 0.935 0.684
x52 ASPc x24,x52** 0.971 0.924
x53 PYRc x1,x53* 0.944 0.335
x54 GLCc x6,x54 0.940 0.092
x55 Cam x30,x42,x55* 0.973 0.622
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For the light-driven algal metabolism of Chlamydomonas
reinhardtii, we detect that photon absorption is the most
sensitive, and its influence is very relevant. The keys in the
figures are sorted according to the sensitivity ranking (Fig. 6).

4 Identifiability analysis

A constraint in a biological model usually involves decision vari-
ables, thus establishing a functional relation between them. The
need for inferring the model structure can be addressed with a
mathematical analysis of the constraints operating in the model.
When a component (e.g. a parameter or a variable) cannot be
uniquely inferred through data measurement or experimental
fitting, it is said to be non-identifiable. The structural non-identifia-
bility occurs when an unambiguous estimation cannot be reached
since non-identifiable components are functionally related with
other non-identifiable components. Conversely, the practical non-
identifiability is caused by the low amount or quality of data available
for estimating the component. The identifiability analysis (IA)
detects those groups of model components that comprise a func-
tional relation by fitting the model repeatedly to experimental data.

Here we seek non-identifiable variables. Given n values for
each of the m decision variables {x1,. . .,xm}, let K = [v1,. . .,vm] A
R n�m be the matrix of the repeated estimates. The column vi A
R n contains the n estimates for the ith variable. Let the
variables be functionally related by unknown linear or non-
linear relations linearized by the transformations a and bj,
where

a xið Þ ¼
Xm

jai

bj xj
� �
þ x;

and x is a Gaussian noise. Using the ACE algorithm,23 we seek
the optimal transformations â(xi) and b̂j (xj), j a i such that

â xið Þ ¼
Xm

jai

b̂j xj
� �

;

Fig. 7 Functional relation among the three decision variables ASP, FUM and Mg
[nmol mg�1] in the matrix, thus highlighting the structural non-identifiability of
these variables. This group has been detected for the FUM metabolite with a
standard calcium concentration [Ca2+] = 10�5 nmol mg�1.

Fig. 8 Optimal transformations b (y axis) found for the three decision variables
ASP, FUM and Mg (x axis) [nmol mg�1] with [Ca2+] = 10�5 nmol mg�1. Although
FUM has been once assigned to the same functional group of ASP and Mg,
it shows a different and noisier behavior.

Fig. 9 Optimal transformations b (y axis) found for the two decision variables
Mg and MAL (x axis) [nmol mg�1] when maximizing ATP and NADH in the DAEs
model of the mitochondrion simulating the cancer condition.

Fig. 10 Optimal transformations b (y axis) found for the two decision variables
Mg and SCoA [nmol mg�1] when minimizing ATP and NADH in the DAEs model
of the mitochondrion simulating the cancer condition.
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where xi is the response and the set {xj}jai is the set of the
predictors.

We take into account the output of the multi-objective
optimization carried out on the DAEs model of the mitochon-
drial metabolism by Bazil et al.13 under different calcium
conditions. More specifically, we investigate (i) the standard
condition of calcium, as well as four modified conditions: (ii) a
small increment (1.5 times), (iii) a large increment (10 times),

(iv) a small decrement (1.5 times) and (v) a large decrement
(10 times). We take into account 55 decision variables of the
model, namely the initial concentrations of its metabolites.
We adopt the method proposed by Hengl et al.24 to detect
automatically structural identifiability consisting of functional
relations between decision variables. These relations are
detected using the alternating conditional expectation algorithm
(ACE).23

Table 2 Functional relations under cancer conditions. We show the results of the IA applied after the multi-objective minimization and maximization of ATP and
NADH

Variable Metabolite

Min{ATP,NADH} Max{ATP,NADH}

Groups r2 cv Groups r2 cv

x1 Hm x1,x17,x38* 0.983 0.517 x1,x52 0.962 0.024
x2 Km x2 0.994 0.044 x2,x9,x15 0.973 0.079
x3 Nam x3,x52,x53* 0.990 0.671 x3,x52 0.987 0.015
x4 Mgm x4,x9** 0.982 0.237 x4,x12 0.965 0.042
x5 Pim x5,x39,x48,x51* 0.995 1.455 x5,x51 0.949 0.000
x6 CITm x6,x18,x27 0.988 0.059 x6,x38 0.965 0.000
x7 ISOCm x7,x9,x39* 0.992 1.541 x5,x7,x52* 0.985 0.704
x8 aKGm x8,x11,x55* 0.986 0.650 x8,x30,x37* 0.984 0.934
x9 SCoAm x4,x9** 0.982 1.290 x9,x52* 0.979 0.777
x10 SUCm x10,x52* 0.972 0.686 x10,x46** 0.994 0.915
x11 FUMm x11,x37,x39* 0.984 2.666 x10,x11* 0.916 1.910
x12 MALm x12* 0.994 2.032 x4,x12** 0.965 1.118
x13 OAAm x13,x18* 0.967 0.283 x13* 0.989 2.602
x14 GLUm x14,x50,x55* 0.989 1.399 x14,x24* 0.976 0.709
x15 ASPm x15* 0.988 0.208 x4,x8,x15* 0.987 0.197
x16 PYRm x16,x37,x54* 0.980 1.459 x16 0.985 0.000
x17 AcCoAm x17,x41,x44* 0.988 1.268 x4,x9,x17* 0.981 0.740
x18 CoASHm x13,x18,x37* 0.992 0.200 x18* 0.986 0.164
x19 Him n.a. n.a. n.a. n.a.
x20 Kim n.a. n.a. n.a. n.a.
x21 Naim n.a. n.a. n.a. n.a.
x22 Mgim n.a. n.a. n.a. n.a.
x23 Caim n.a. n.a. n.a. n.a.
x24 ATPim x2,x24,x49* 0.980 0.282 x14,x24,x37* 0.983 0.854
x25 ADPim x25,x42* 0.971 0.239 x3,x25,x44* 0.985 0.234
x26 AMPim x26,x41* 0.958 2.195 x26,x51** 0.967 0.788
x27 Piim x6,x27* 0.967 1.533 x27 0.993 0.005
x28 PYRim x28,x55* 0.962 0.282 x28 0.980 0.004
x29 CITim x29,x53* 0.982 0.672 x12,x29,x37* 0.980 0.949
x30 ISOCim x3,x30 0.977 0.006 x8,x10,x30* 0.992 0.972
x31 aKGim x31,x34** 0.985 1.217 x12,x31* 0.970 1.153
x32 SUCim x32,x54** 0.966 0.946 x32,x35,x40* 0.975 0.262
x33 FUMim x33,x46* 0.971 2.470 x33* 0.989 2.012
x34 MALim x31,x34** 0.985 0.533 x34,x48** 0.982 1.093
x35 GLUim x32,x35,x46* 0.985 2.539 x9,x35,x42* 0.978 1.167
x36 ASPim x34,x36* 0.955 2.994 x36,x52 0.935 0.008
x37 Kc x8,x18,x37* 0.993 0.859 x24,x37,x49* 0.984 0.944
x38 Nac x33,x38,x46* 0.989 0.143 x30,x38* 0.938 0.308
x39 Mgc x39,x43* 0.974 1.342 x12,x39* 0.956 0.358
x40 Cac x12,x18,x25,x40* 0.992 0.282 x32,x40,x50* 0.973 2.272
x41 ATPc x4,x7,x41* 0.988 0.865 x9,x41 0.898 0.004
x42 ADPc x42* 0.995 0.161 x35,x42,x51* 0.980 0.752
x43 AMPc x43,x55* 0.980 1.404 x43,x53* 0.924 0.839
x44 Pic x43,x44,x47* 0.986 1.241 x12,x41,x44* 0.977 0.117
x45 CITc x14,x45,x53* 0.991 0.687 x45* 0.989 0.246
x46 ISOCc x38,x46* 0.981 0.231 x10,x46** 0.994 0.964
x47 aKGc x24,x47* 0.969 0.557 x47,x50* 0.953 2.273
x48 SUCc x17,x48* 0.978 0.573 x34,x48 0.982 0.002
x49 FUMc x24,x46,x49* 0.980 0.211 x10,x37,x49* 0.985 0.742
x50 MALc x13,x50,x52* 0.988 0.631 x10,x50* 0.971 0.856
x51 GLUc x17,x51* 0.945 2.709 x26,x51 0.967 0.003
x52 ASPc x3,x52* 0.964 1.326 x3,x7,x52* 0.989 1.143
x53 PYRc x3,x53* 0.982 0.686 x46,x53 0.916 0.000
x54 GLCc x32,x54** 0.966 0.341 x16,x46,x54* 0.958 0.674
x55 Cam x38,x43,x55* 0.987 1.263 x31,x55 0.970 0.001
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In our study, the connection between optimization and
identifiability is due to the fact that the estimates in the fitting
matrix K consist of all the non-dominated feasible points
obtained in the multi-objective optimization process. In the
mitochondrial DAEs model, the constraint is detected through
100 estimates of all the 55 variables (metabolites). Each estimate
corresponds to a point of the Pareto front involving the ATP and
NADH production. To detect the functional relations, shown in
Table 1, we use the Mean Optimal Transformation Approach
(MOTA).24

The ‘‘groups’’ column indicates the functional relations
between variables. For instance, fumarate, Mg and aspartate
are functionally related. In other words, the response variable
x11 is strongly related to the predictors x4 and x15. Conversely,
Na, Pi, SUC and OAA in the matrix do not have any functional
relation with any other enzyme. The value of r2 is an indicator
of the amount of variance of the response explained by the
predictors. A high r2 indicates that the fixation of the predictors
has a major effect on the standard deviations of the response.
The cv(x) = std(x)/mean(x) helps distinguish practical identifi-
able from non-identifiable parameters.24 A functional relation
among k variables is tested k times considering each variable as
a response variable, and gets two asterisks if it is detected at
least two times.

In Fig. 7 we show the functional relations among ASP, FUM
and Mg detected by the identifiability analysis applied to
fumarate. Fig. 8 shows that the optimal transformation b found
for x11 is different from the transformations found for x15 and
x4, although the IA applied to FUM has assigned x11 to the same
functional group of x4 and x15. This can happen when the
variables taken into account are also practically non-identifiable
(which is the case of these three metabolites, since their cv
is high).

In order to perform the identifiability analysis in the cases
analyzed in the optimization section, we perturb the calcium
concentration and detect the non-identifiabile variables
for each of the cases we analyze. All the results are shown in
Table S1 (ESI†). After multiplying by 1.5 the amount of calcium
in the model, in Fig. S6 (ESI†) we show the functional relations
among Na, Pi and AcCoA detected by the identifiability analysis
applied to Na. Fig. S7 (ESI†) shows that the optimal transforma-
tion b found for AcCoA is different from the other two trans-
formations in the functional group, thus indicating a practical
non-identifiability. Fig. S8 (ESI†) shows the functional relations
among Mg and CoASH when the amount of calcium in the
matrix is increased from 10�5 to 10�4 nmol mg�1, detected by
the identifiability analysis applied to Mg. This pair has a clear
functional relation but a very low cv value, indicating structural
but not practical non-identifiability. Fig. S9 (ESI†) shows the
optimal transformation b for Mg and CoASH.

If the amount of calcium is reduced to 10�5/1.5 nmol mg�1,
the identifiability analysis applied to PYR detects a functional
relation among H, PYR and AcCoA (see Fig. S10, ESI†). Remark-
ably, the optimal transformation b shown in Fig. S11 (ESI†)
indicates that H may be practically non-identifiable, since its
optimal transformation differs from the others in the same

Table 3 Identifiability analysis applied to the FBA model of the mitochondrion.
The 73 fluxes are grouped according to functional relations

Variable Metabolite Metabolite groups r2 cv

x1 CO2 x1,x73 0.983 0.000
x2 FAD x2,x40 0.991 0.000
x3 Oxygen x3,x24,x40 0.998 0.015
x4 Glutathione x2,x4 0.989 0.000
x5 Arginine x3,x5,x16* 0.996 0.751
x6 Lysine x6,x9* 0.981 1.351
x7 Glutamate x7,x33,x70* 0.995 0.378
x8 Proline x8,x61* 0.968 1.173
x9 Fe2+ x9,x66 0.992 0.000
x10 Aspartate x10,x46,x49 0.993 0.087
x11 Glycine x11,x46** 0.983 0.234
x12 Tyrosine x12,x47** 0.990 0.248
x13 Asparagine x13,x21,x31,x37,x38,x51 0.998 0.000
x14 Methionine x14,x73** 0.981 0.653
x15 Phenylalanine x15,x28,x30* 0.995 0.778
x16 Tryptophan x5,x16,x49* 0.994 0.655
x17 Histidine x3,x17,x54* 0.994 0.486
x18 Glutamine x9,x10,x18,x42* 0.998 0.185
x19 5-Aminolevulinate x2,x19* 0.973 0.317
x20 Cysteine x11,x20* 0.975 0.579
x21 Phosphatidylcholine x21,x41 0.979 0.000
x22 Phosphatidylserine x13,x22,x51 0.992 0.000
x23 Phosphatidylethanolamine x1,x9,x23,x37 0.998 0.000
x24 a-D-Glucose x3,x24* 0.996 0.392
x25 Glycerol x25,x61 0.992 0.000
x26 Propanoate x24,x26* 0.979 0.485
x27 Sulfate x27,x38 0.995 0.000
x28 Sulfite x28,x42 0.979 0.000
x29 Thiosulfate x3,x29 0.989 0.000
x30 Succinate x30,x33* 0.972 0.779
x31 (S)-Malate x2,x31* 0.982 0.381
x32 Isocitrate x11,x32 0.981 0.097
x33 Citrate x3,x7,x33* 0.997 0.243
x34 Butanoicacid x28,x34* 0.972 0.192
x35 Oxaloacetate x35* 0.996 0.103
x36 2-Aminoadipate x7,x36,x37,x50,x54 0.997 0.000
x37 2-Oxoadipate x37,x51 0.974 0.000
x38 CoA x38,x54 0.981 0.000
x39 H2O x39 0.998 0.000
x40 (R)-3-Hydroxybutanoate x2,x40 0.991 0.060
x41 Urea x41,x54 0.982 0.000
x42 Orthophosphate x42,x54 0.985 0.000
x43 Thiamindiphosphate x13,x31,x43,x63 0.997 0.000
x44 Biomass x32,x44,x64* 0.998 0.864
x45 NAD+ x45,x60 0.981 0.000
x46 ADP x11,x46 0.983 0.000
x47 UDP x12,x47 0.990 0.000
x48 2-Oxoglutarate x3,x48* 0.984 0.307
x49 GDP x49,x66 0.983 0.000
x50 CDP x7,x50,x54,x73 0.997 0.000
x51 dATP x29,x41,x51 0.994 0.000
x52 dADP x52,x63 0.972 0.000
x53 dGTP x11,x53 0.975 0.000
x54 dGDP x50,x54 0.986 0.000
x55 dTDP x55,x66 0.974 0.000
x56 dCTP x9,x56,x57 0.988 0.000
x57 dTTP x3,x57 0.982 0.000
x58 dCDP x1,x30,x54,x58 0.998 0.000
x59 ATP x3,x12,x52,x59* 0.996 3.265
x60 H+ x5,x36,x45,x60* 0.996 0.627
x61 Isoleucine x25,x61** 0.992 0.173
x62 Leucine x62* 0.997 0.220
x63 Valine x9,x63* 0.983 0.522
x64 Acetaldehyde x16,x46,x64* 0.995 0.650
x65 Hexadecanoicacid x65* 0.994 2.486
x66 (S)-Lactate x9,x66** 0.992 0.485
x67 Fumarate x18,x67* 0.973 1.366
x68 Octanoicacid x60,x66,x68,x73 0.994 0.000
x69 HCO3� x69* 0.998 1.540
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functional group. Among the functional groups shown in Table S1
(ESI†), when the concentration of calcium is 10�5/1.5 nmol mg�1,
the one composed of Asp and CoASH is detected two times from
the IA algorithm, and therefore these two metabolites are involved
in a strong functional relation, shown in Fig. S12 (ESI†). The
optimal transformations b are shown in Fig. S13 (ESI†). Fig. S14
(ESI†) shows the functional relations among Na and GLU when the
amount of calcium is reduced to 10�6 nmol mg�1, detected by the
identifiability analysis applied to Na. Fig. S15 (ESI†) shows the
optimal transformation b found for both metabolites.

In order to give some insights into the cancer condition of
the mitochondrion, in Fig. S16 (ESI†), we show the functional
relations among Mg and MAL detected by the identifiability
analysis applied to both Mg and Malate when maximizing the
production of ATP and NADH in the mitochondrial model.
Indeed, this is a strong functional relation since this pair has
been detected both times by the algorithm. The optimal trans-
formation b is shown in Fig. 9.

Conversely, when minimizing ATP and NADH, Mg is detected
in a strong functional relation with SCoA (see Fig. S17, ESI† and
the optimal transformation b in Fig. 10). This relation has been
detected two times both for Mg and for SCoA. All these condi-
tions are summarized in Table 2.

Finally, in Table 3 we show the output of the identifiability
analysis applied to the mitochondrial FBA model.

5 Conclusions

The present work shows how multi-objective optimization, sensitivity
and identifiability analyses can be combined to gain an insight into
computational models under a variety of conditions. In particular,
we have investigated two models based on flux balance analysis
(a mitochondrial model and an algal model), and a model based on
differential and algebraic equations. The analysis of the Pareto
optimal front, with information from sensitivity and identifiability,
proves useful to tackle the complex chemical reaction networks often
found in cells, consisting of many pathways with different responses
to perturbations.

The sensitivity analysis evaluates the role that the variables
play in the model. Specifically, the biological system is perturbed
to seek the variables that mainly affect its behavior under varying
conditions. The identifiability analysis finds functionally related
groups of variables to reveal whether a component of a model
can be uniquely determined or not. Non-identifiable variables
may be fixed at an arbitrary value without modifying the model’s
dynamical properties.

The combination of these techniques allows us to reach the
optimal configuration and carry out a systematic study on any

model consisting of ODEs, DAEs, FBA and GPR mappings. In a
large model composed of different submodels, the output of these
techniques applied to subnetworks can be easily integrated,
allowing a convergence of different modeling techniques.25 For
instance, links between properties of each functional submodule
can be established using network analysis approaches,26 which
allow us to understand the function and evolution of the entire
biological process.

Interestingly, we can conclude that our approach also allows
comparison of the patterns of change in metabolic processes.
We are interested in providing measures so that we could
eventually make statements such as ‘‘the pathway X in humans
is more similar to a pathway in gorillas than mice’’. Our
methodology points in that direction, as it allows us to reduce
the metabolic network with summary statements such as ‘‘the
pathway P plays a key role in the species X, whereas in the other
species Y the pathways Q and R are dominating’’. We believe
that our work could provide an interesting insight into the
methodology of biological network analysis, inching towards
the full understanding of the complex bioenergetics of the
mitochondrion.
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