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a b s t r a c t

In this paper, we discuss data and methodological challenges for building bacterial
communication networks using two examples: E. coli as a flagellate bacterium and G.
sulfurreducens as a biofilm forming bacterium. We first highlight the link between the
bacterial network communication designwith respect tometabolic information processing
design. The potentialities of designing routing network schemes described previously in
the literature and based on bacteria motility and genetic message exchanges will depend
on the genes coding for the intracellular and intercellular signalling pathways. In bacteria,
the ‘‘mobilome’’ is related to horizontal gene transfer. Bacteria trade-off the acquisition of
newgeneswhich could improve their survival (andoften their communication bandwidth),
keeping their genome small enough to ensure quick DNA replication and fast increase
of the biomass to speed up cell division. First, by using a multi-objective optimisation
procedure, we search for the optimal trade-off between energy production, which is a
requirement for the motility, and biomass growth, which is related to the overall survival
and fitness of the bacterium.We use flux balance analysis of the genome-scale biochemical
network of E. coli k-13 MG1655. Then, as a second case study, we analyse the electric
properties and biomass trade-off of the bacterium G. sulfurreducens, which constructs
an electric biofilm where electrons move across the nanowires. Here we discuss the
potentialities of optimisation methodologies to design and select bacterial strains with
desiderata properties. The optimisation methodologies establish also a relation between
metabolism, network communication and computing. Moreover, we point to genetic
design and synthetic biology as key areas to develop bacterial nano communication
networks.

© 2013 Elsevier B.V. All rights reserved.
0. Introduction: communications in bacteria

Bacteria colonise every environment; for example the
human intestinalmicrobiotamay contain 1013–1014 bacte-
ria whose overall gene diversity (‘‘microbiome’’) contains
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at least 100 times as many genes as our own. Our mi-
crobiome has a significantly enriched metabolism of gly-
cans, amino acids, and pathway-mediated biosynthesis of
vitamins and isoprenoids. The study of metabolism is the
key aspect to evaluate the role of bacteria in the en-
vironments, as well as to design new biotechnologically
useful strains. In general, the study of metabolism can
provide key insights into the understanding of the over-
all behaviour of bacteria and, importantly, into their
phenotype–genotype relationships. The experimental in-
vestigation of the metabolic capabilities of a given
organism is highly demanding in terms of both costs and
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wet-lab resources. Conversely, an in silico analysis of the
overall metabolic capabilities of the system can help in
predicting or designing phenotypes or, at least, reduce the
choice of useful experiments.

Bacteria could be used to build nano communication
networks that operate in microfluidic devices, body area
networks or other environments [1]. Bacteria are con-
strained by an impermeable membrane. They have a
system of surface proteins regulating the exchange of
information, and a molecular system inside the cell that
interprets the external information and acts upon. The fit-
ness of a bacterium is particularly concentrated on the
speed of dividing, but the cell division time depends on
reaching a certain biomass. In order to achieve a biomass,
the bacterium needs energy to locate a source of food and
move towards it. A bacterium typically swims by alternat-
ing straight runs with short periods of tumbles that ran-
domly reorientate the next run. Motile bacteria suppress
tumbles when they head either up concentration gradi-
ents of attractants or down gradients of repellents. Motile
bacteria synthesise proteins for chemotaxis including flag-
ella formation when the substrate concentration, i.e. food,
becomes low. The synthesis and function of the flagellar
and chemotaxis system requires the expression of a net-
work of more than 50 genes, therefore it is genomically
and metabolically expensive. Using the proteins coded by
those genes, a bacterium uses receptors to sense the
spatial gradient and compares the instantaneous concen-
tration of carbon sources. Although existing models of
bacterial chemotaxis do not take into account the tight
coupling with the metabolism, it is known that the
metabolismmodulates chemotaxis andmotility behaviour.
In this paper, we study the metabolism as a trade-off be-
tween energy (required for motility) and the biomass (re-
quired for the growth) (Fig. 2). A decrease in biomass due
to starvation would require spending resources towards
searching new source of food and therefore accomplishing
chemotaxis specific signal transduction, through the direct
modulation of flagellar rotation.

In the next sections, we describe the methodology for
designing strains (Pareto fronts and flux balance analysis
(FBA)), the additional information from other omics we
may use, the relations between metabolism, computing
and communications (see also [2,3]).

1. Flux balance analysis

The flux balance analysis (FBA) approach provides the
solutions (reaction fluxes) satisfying the optimisation of
the most efficient use of available resources, such as nu-
trients [4]. Organic compounds are converted to carbon
skeletons for the synthesis of various cell components and
for the production of energy. This is possible through the
regulation of the reactions of anabolism and catabolism.
We believe that the bacterium behaviour could be anal-
ysed using multi-optimisation techniques [5]. The result
of the multi-objective optimisation is not a single solu-
tion (such as in a single optimisation problem), but a set of
non-dominated points, which constitutes the Pareto sur-
face. Therefore, we can seek the best trade-off design for
the set of pathways considered, leading to optimise si-
multaneously multiple cellular functions of interest. For
each Pareto optimal solution, it will be possible to compute
the robustness, the sensitivity and the identifiability inte-
grated with all the available data. The information on the
sensitivity (the elements that have a large influence on the
system outputs are considered sensitive) of biological net-
works and pathways could be used to suggest where and
how much to modify a metabolic network.

A three-dimensional Pareto front can help reach the
trade-off among biomass production, genome size and the
metabolism associated with them, and energy for chemo-
taxis andmovement (Fig. 1). For example, need to increase
the biomass (biomass size influences cell division), and
keep low the genome size in order to replicate quickly.
Probably for this reason, genes transitorily useful are kept
on accessory chromosomes which could be replicated in
parallel and be lost or kept. We assume that the energy
for the location of food source is in high demand and has
higher priority than the biomass growth and division. It is
noteworthy that metabolic and genome design could pro-
duce bacteria with different motility and different tumble
frequencies to fit ad hoc network topologies. Furthermore,
the capacity to respond to gradients could be tuned by ex-
pressing different types and amount of receptor proteins
or sensor pathways.

1.1. Designing properties using Pareto front guidance

When a system cannot optimise all the tasks it per-
forms, a trade-off between contrasting objectives can be
obtained using a multi-objective optimisation technique.
For example, two communicating organisms can harness
the many-objective Pareto optimality to find a trade-off
decision that allows to define their behaviour. The Pareto
front allows to maximise or minimise two or more target
metabolites in an organism, thus obtaining new optimal
strains specialised in many aims concurrently. By adopt-
ing a trade-off strategy, an organism is able to optimise
simultaneously several biotechnological targets, e.g. the
input and the output of the computation it carries out.
Given r objective functions f1, . . . , fr to optimise, the prob-
lem of optimising in a multi-objective fashion can be for-
malised as

max
x

(f1(x), f2(x), . . . , fr(x))T ,

where x is the variable in the search space. Without
loss of generality, in the definition all the functions
are maximised (however, minimising a function fi is
equivalent to maximising −fi). The output of a multi-
objective routine is a set of Pareto optimal points, which
constitute the Pareto front. A solution y∗ is Pareto optimal
if there does not exist a point y such that f (y) dominates
f (y∗). Formally, y∗ is Pareto optimal if @ y s.t. fi(y) >
fi(y∗) ∀i = 1, . . . , r , where f is the vector of r objective
functions that have to bemaximised in the objective space.

Bacteria can be genetically modified and the changes
described in the Pareto-front framework to find the best
trade-off between two or more requirements. Since the
bacterium has always more than one function, the de-
cision whether to communicate with another bacterium
has to take into account the output of an internal multi-
objective optimisation routine. For instance, an Escherichia
coli whose objectives are the production of acetate and
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Fig. 1. Trade-off among biomass production (which affects the cell duplication time), minimal size of the genome (which affects the genome replication
time), and energy for chemotaxis, movement and other cell activities. In a first step (a), the bacterium on the left sends a piece of genome to the bacterium
on the right, which engulfs the new piece of code enriching its genome (b). This allows to produce more energy for movement and biomass, but at the cost
of an increased genome size.
Fig. 2. Pareto front of the biomass (y-axis) versus energy (ATP) (x-axis) in E. coli; a more ‘‘energetic’’ strain would represent a choice towards an increased
motility; the biomass choice would represent a choice towards a faster replicating strain.
biomass, obtains the Pareto front in Fig. 4. (The model
taken into account is the E. coli by Orth et al. [6].) A Pareto
front produced by an organism is the set of all the phe-
notypes that overcome all the feasible phenotypes domi-
nated on all tasks [7]. Communicating with other bacteria
is intended to increase the computational capability of the
bacterium, and therefore moves the Pareto front towards
the best unfeasible point, which is located at the top right
of the acetate–biomass graph. Nevertheless, this can
decrease the capability of the bacterium to produce a
third-objective, and therefore the decision may require a
three-objective optimisation routine. The communication
happens when two bacteria share DNA fragments (see
Fig. 6).
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Fig. 3. E. coli Pareto fronts for the simultaneous maximisation of succinate and acetate production obtained by GDMO in anaerobic conditions (O2 =

10 mmol h−1 gDW−1), with glucose feed equal to 10 mmolh−1 gDW−1 . The acetate represents sources of energy; the succinate enters the krebs cycle.
Fig. 4. Result of the two-objective optimisation routine carried out on the E. coli model. Since the communication among bacteria allows to share DNA
fragments, and therefore increases their computational capabilities towards one or more objectives (e.g., acetate and biomass) in which a bacterium
specialises.
1.2. The mobilome: conjugation for network communication

Bacterial conjugation involves DNA transfer between
donor and recipient called lateral gene transfer (LGT),
which has great importance in building the genomes of
prokaryotic organisms (Fig. 5). The LGT from bacteria to
humans is more likely to occur in tumour samples than in
healthy somatic cells [8,9].

In bacteria, horizontal gene transfer is often mediated
by conjugative genetic sequences that transfer directly
from cell to cell. Integrative and conjugative sequences are
mobile genetic elements that reside within a host genome
but can excise to form a circle and transfer by conjugation
to recipient cells. The LGT device in the cell is assembled
each time there are conditions for exchange. Gene duplica-
tion has long been recognised as an important mechanism
for the creation of newgene functions [10]. Note that due to
LGT half of all Staphylococcus aureus infections in theworld
are resistant to penicillin, methicillin, tetracycline and ery-
thromycin. Vancomycin resistant bacteria were first iden-
tified in Japan in 1996, and strains have since been found in
hospitals in England, France and the US. LGT facilitates ef-
ficient communication among the cells, and provides them
access to a global prokaryote genome (superorganism),
preventing massive extinctions of genes. Therefore, FBA
could be meaningful to provide a methodological means
to integrate the superorganism metabolism. In other
words, FBA could model steady state conditions for both
metabolic, single and multiple compartment systems and
ecosystems (natural, such as free external environments,
gut and other organs, or endosymbiotic and artificial, such
as microfluidic devices or other devices). The acquisition
of novel useful information comes at the cost of replicat-
ing a larger genome, spending energy content molecules
or intermediate of reactions not always directly related to
cell growth or division, increasing the resources for control.
The competition among bacteria favours efficient resource
(number of genes) management, and therefore redundant
or rarely used information is frequently lost. This results
in a maintenance of the genome size for the majority of
bacterial species, which could keep additional information
(such as genes coding for proteins important for survival in
antibiotics or metal rich environment) on plasmids (ac-
cessory chromosomes). We may think that the trade off
between genome size and metabolic richness could be
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Fig. 5. The tree in (a) describes the duplication events, or LGT. Recent events are separated by short distance in the x axis, i.e. events with a low number of
mutations occurred. In (b), the LGT events occurring in a network of three bacteria (B1-3); in green are the sensor or flagellar proteins; in red the protein
interactions. The LGT events generate often similar but not equal metabolic networks. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 6. Communication between two bacteria. Communication between bacteria (left) allows the small bacterium to copy and send a piece of genome to
the larger one, which engulfs the new piece of code and increases its computational capability (centre). Therefore, the genome is enriched, allowing for
further optimisation of multiple objectives (right).
described by a Pareto front representing the two-objective
optimisation.

2. Targets for designing bacterial communication

The surface of bacteria contains pili, which allow
them to come together and form contacts. The pili are
1 µm long with a 6–7 nm diameter; they have extension
speed of 400 nm/s and 6 nm/s. In many cases bacteria
form colonies and biofilms, which make the encounters
highly probable. Then, gene transfer often happens. The
relationship between time and amount of transferred
genetic information is linear (after a certain delay due to
the assembling of the protein machinery) and accurate
enough to be used for identifying the order of the genes
through so called interrupted-mating. The transfer process
takes several minutes to start due to the assembling of
the related structures, but proceeds quickly. For example,
a sequence of 100 bases could take five minutes for the
transfer, while five million bases will take approximately
100 minutes. The important property of conjugation is the
meeting distance between the bacteria.

Conjugation is mediated by self-transmissible plasmids
such as F-Plasmids, as well as phage-like sequences that
have been integrated into the bacterial chromosome,
such as Integrative and Conjugative Elements (ICEs). Both
conjugative plasmids and ICEs can mediate the transfer of
mobile elements by sharing their conjugative machinery.
An important observation is that many bacteria grow in
chains, i.e. dense communities of cells, where the presence
of conjugative elements in cells can contribute to the
formation of such communities.
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When acquired by one cell in a chain, ICEs spread
rapidly from cell to cell within the chain by additional se-
quential conjugation events. This intra-chain conjugation
is inherently more efficient than conjugation that is due
to chance encounters between individual cells. Therefore,
although the process is slow because it requires build-
ing a protein complex, it can quickly spread, where a
single donor cell can convert a population of recipient
cells to donor cell status via a process similar to epi-
demic spreading. Conjugation requires coupling proteins
that link the transferosome (a type IV secretion system in
Gram-negative bacteria) to the relaxosome, a nucleopro-
tein complex at the origin of transfer. Although broadly
speaking, the transfer systems appear to be able to drill a
hole through any recipient cell envelope and start the DNA
transfer in a recipient-independent manner, there are sev-
eral factors and security checks affecting the process. The
transfer potential of these transfer regions depends on the
integration of many signals in response to environmental
and physiological cues. Conjugative elements can be nar-
row or broad host range, depending on their ability to be
established and maintained in the new host. Genetic in-
formation transfer could be modulated by repressors and
activators, which can be induced via small molecules or
peptides, or in response to excision from the host genome.
An intriguing mechanism for blocking DNA transfer be-
tween two related donor cells is entry exclusionwithmany
conjugative systems encoding Eex genes as well as associ-
ated genes for surface exclusion, which block cell-to-cell
contact. It is noteworthy that bacteria such as Enterococ-
cus use pheromones to trigger gene expression prior to
conjugative DNA transfer with the pheromone being re-
leased by the recipient cell. Therefore, both temperature
and pheromones could be used in a device to modify the
conjugation rate.

2.1. Communication and Turing Machines

Let us now turn into the relation between computa-
tion and metabolism inspired by Turing [11]. Turing states
that an organism, most of the time, develops from one pat-
tern into another. Many years later, Bray [12] argued that
a single protein is able to transform one or multiple in-
put signals into an output signal, thus it can be viewed as
a computational or information carrying element. Follow-
ing this line of thought, we provide a framework to show
that bacteria could have computational capability and act
as molecular machines. This relationship is based on the
mapping between the metabolism and a Minsky Register
Machine (RM, equivalent to a TuringMachine, TM). Specif-
ically, we think the reactions in the bacterium as incre-
ment/decrement instructions of the RM,where theRMreg-
isters count the number of molecules of each metabolite.
This approach highlights the mechanical aspect of a bac-
terium, which can work backwards and forwards execut-
ing reactions through its metabolites.

It is well known that a von Neumann architecture is
composed of a processing unit, a control unit, a memory to
store both data and instructions, and input–output mech-
anisms.We propose an effective formalism tomap the von
Neumann architecture to an entire bacterial cell, which be-
comes amolecularmachine. Wemodel the processing unit
of the bacterium as the collection of all its chemical re-
actions, so as to associate the chemical reaction network
of bacteria with a TM [13]. Here we use GDMO [5] to ob-
tain Pareto fronts representing multi-objective optimisa-
tions in the metabolism. Each point of the Pareto front
provided by GDMO is a molecular machine to execute a
particular task. Pareto optimality allows to obtain not only
a wide range of Pareto optimal solutions, but also the best
trade-off design. In Fig. 3 we show a Pareto front obtained
with GDMOwhen optimising acetate and succinate.

Optimal genetic interventions in bacteria, framed as
optimal programs to be run in amolecular machine, can be
exploited to extend and modify the behaviour of bacteria.
For instance, programs can instruct cells to make logic
decisions according to environmental factors, current cell
state, or a specific user-imposed aim, with reliable and
reproducible results.

The LGT can be thought of as a process for increasing
and decreasing the computational capability of an organ-
ism, while seeking the trade-off between computation and
minimal genome length. Let y be an array representing the
sequence of the L genes of the organism. During the evo-
lution process, a gene or a subsequence of genes (e.g. an
operon) can be duplicated and inserted in the sequence.
Without loss of generality, let us assume that the last k
genes are duplicated:
y = (y1, . . . , yL) −→ y = (y1, . . . , yL, yL+1, . . . , yL+k).

This process is called gene amplification or gene dupli-
cation. It has been estimated that 50% of E. coli genes are
paralogs i.e. have arisen from a gene duplication event, as
opposed to orthologs, which have arisen due to species
divergence. The condition of duplication holds at the begin-
ning: yl = yl−k, ∀l = L + 1, . . . , L + k, but it is not guar-
anteed at later steps, due to the fact that the duplication
is a stochastic process. Then, after mutations occurring on
new and existing genes, the array of genes can be denoted
as y = (y1, . . . , yL′), where L′

= L + k. Let us suppose that
yL is responsible for the reaction Di → Dj + Hr and for
the corresponding instruction inc(i, r, j) in Minsky’s regis-
ter machine (RM, formally defined in Section 2.2) [14,15].
After the duplication event, also yL+k will be responsible for
the same reaction, while after the mutation yL+k will code
for another reaction, say Di′ → Dj′ + Hr ′ .

The computational complexity of an organism evolves
on the basis of stochastic processes and natural selection.
Indeed, the mutation process is stochastic, and generates
the possibility of adding new instructions to the machine.
The natural selection can keep or discard each new in-
struction. If the new reaction inc(i′, r ′, j′) is included in the
RM, its computational capability increases. We can deduce
that each duplication followed by a mutation shapes the
computational capability of the metabolic machine repre-
sented by its metabolism. These processes permit to in-
crease the range of chemical reactions available in the
organism, increasing also the range of increment and
decrement instructions in the RM representing its me-
tabolism.

2.2. Metabolic networks as vehicles for communication

Inspired by Brent and Bruck [16], who studied similar-
ities and differences between biological systems and von
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Neumann computers, we propose a correspondence be-
tween the von Neumann architecture and bacteria. Specif-
ically, the metabolism of a bacterium can be viewed as
a Turing Machine. The bacterium takes as input the sub-
strates required for its growth and, thanks to its chem-
ical reaction network, produces desired metabolites as
output. The string y acts as a program stored in the
RAM [13]. Let us consider the multiset Y of the bits of
y. A partition Π of the multiset Y = {y1, y2, . . . , yL} is
a collection {b1, b2, . . . , bp} of submultisets of Y that are
nonempty, disjoint, and whose union equals Y . The ele-
ments {bs}s=1,...,p of a partition are called blocks.Wedenote
by P(Y ; p) the set of all partitions ofY with pblocks. P(Y ; p)
has a cardinality equal to the Stirling number, namely
|P(Y ; p)| = SL,p.

In order to formalise the behaviour of the control unit,
let us define the function:

gΦ : {0, 1}L −→


y∈{0,1}L

P(Y ; p),

ȳ ∈ {0, 1}L −→ Π ∈ P(Ȳ ; p),

where the partition Π is uniquely determined by the
pathway-based clustering of the chemical reaction net-
work. We can formalise this clustering as a p-blocks par-
tition Φ of the set of the bit indexes in the string y. In
particular, if we denote by [L] the set of the first L natural
numbers, we have Φ ∈ P([L] ; p) [13]. The partition Φ al-
lows the control function gΦ to partition the multiset Y as-
sociated with the string y. Each element of the partition Π

is the submultiset bs of all the gene sets related to reactions
in the sth pathway. The processing unit of the bacterium
could bemodelled as the collection of all its chemical reac-
tions. Therefore, the chemical reaction network of bacteria
can be associated with a TM [17]. Let us consider Minsky’s
register machine, i.e. a finite statemachine augmentedwith
a finite number of registers. Formally, a Minsky machine
M = (D, i0, i1, ϕ) is composed of a finite set D of states, a
finite set H = {Hr}r of registers, and a multivalued map-
ping ϕ : D \ {i0} −→ {(Hr , i), (Hr , j, k) | Hr ∈ H, j, k ∈

D}. The set D has two distinguished elements i0, i1 ∈ D
representing the initial state and the halting state respec-
tively. Each register Hr of the RM stores a non-negative in-
teger. The instruction inc(i, r, j) increments register r by
1 and causes the machine to move from state i to state j
through the mapping ϕ(i) = j. Conversely, the instruction
dec(i, r, j, k), given that Hr > 0, decrements register r by
1 and causes the machine to move from state i to state j
(ϕ(i) = j); if Hr = 0, the machine moves from state i
to state k (ϕ(i) = k). Minsky’s RM has been proven to be
equivalent to the TM.1 Indeed, a RM is amultitape TMwith
the tapes restricted to act like simple registers (i.e. ‘‘coun-
ters’’). A register is represented by a left-handed tape that
can hold only positive integers by writing stacks of marks
on the tape; a blank tape represents the count ‘0’. The
chemical reaction network of a bacterium can be mapped
to the RM by defining [17]: (i) the set of state species {Di},
where each Di is associated with the state i of the RM;

1 M.L. Minsky. Computation. Prentice-Hall, 1967.
(ii) the set of register species {Hr}, where each Hr is associ-
atedwith the register r of the RM, and therefore represents
the molecular count of species r . The instruction inc(i, r, j)
represents the chemical reaction Di → Dj + Hr , while the
instruction dec(i, r, j, k) represents either Di + Hr → Dj
or Di → Dk depending on whether Hr > 0 or Hr = 0 re-
spectively. The molecular machine performs the ‘‘test for
zero’’ by executing the reaction Di → Dk only when Hr is
over, since the rth register cannot be decreased and the re-
actionDi+Hr → Dj cannot take place. In the FBA approach
coupled with the metabolic machine, the variables are the
fluxes of the chemical reactions, therefore a high flux cor-
responds to both a high rate of reaction and a high mass of
products. Hence, given the increment reaction inc(i, r, j),
the value of Hr is positively correlated with the reaction
flux; conversely, in the decrement reaction dec(i, r, j, k),
when Hr > 0 the value of Hr is negatively correlated with
the reaction flux. In a fixed volume V in which the reac-
tions occur, given two reactions inc and dec with fluxes v1
and v2 respectively, the metabolism of the bacterium has a
probability of error per step equal to ε = v2/(v1/V + v2).

Since the simulated TM can be universal, the correspon-
dence between metabolism and TM allows to perform any
kind of computation through a set of species and chemi-
cal reactions characterised by their flux. As a result, bac-
teria can carry out at least any computation performed by
a computer. A program embedded in a bacterium, whose
metabolism works like a TM, could be able to implement
the robust knockout strategy found by GDMO [5].

It is noteworthy that, in theory, the frequency and
species restrictions of future gene lateral transfer capacity
could be encoded in the genes being transferred to a
bacterium. This could result into changing the size of the
mobilome. The metabolic computing could also generate
different partition of bacteria that could share genetic
material and co-evolve accordingly.

3. Geobacter: network communication through bio-
films

An anaerobic bacterium, Geobacter found in sediment
under the Potomac River in 1987 has soil bioremedia-
tion capacity due to its ability to respire iron and other
metals. In 2002, microbiologists further discovered that it
could produce electricity from the organic matter found in
soils, sediments and wastewater due to electrically con-
ductive pili, i.e. sort of hairs [18–20]. These conductive pro-
tein appendages that transfer electrons to metal oxides
and to other cells are only 3–5 nm in diameter and more
than a thousand times longer than they are wide. The pili
of a population of this bacterium form an electro-active
biofilm [21] that provides a direct electrochemical con-
nection with the electrode surface using it as electron ex-
changer, without the aid of mediators. Geobacter species
produce higher current densities than any other known
organism in microbial fuel cells (for example Rhodoferax
ferrireducens, Shewanella [22]) and are common colonis-
ers of electrodes harvesting electricity from organicwastes
and aquatic sediments. On electrodes, the bacteria produce
thick, electrically conductive biofilms. These processes can
be harnessed for the bioremediation of toxic metals and
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the generation of electricity in bioelectrochemical cells.
Key to these applications is a detailed understanding of
how these nanostructures conduct electrons. This discov-
ery represents a paradigm shift not only in biology but also
in nanotechnology.

3.1. Useful Geobacter properties for communication applica-
tions

Our studies of Pareto fronts highlight the potentiali-
ties of choosing different strains according to the biomass-
electronic properties. A larger biomass may turn into more
dense biofilms, while optimising in a different way could
allow to obtain better electronic properties of the biofilm.
Geobacter has been shown to produce biofilms contain-
ing exopolysaccharides [23] aswell as proteinaceous struc-
tures (pili). The biofilm matrix or extracellular polymeric
substance (EPS) or xap (extracellular anchoring polysac-
charide) is a perfect medium for entrapment of redox
proteins for short- and long-range electron transfer, in
particular localisation of essential cytochromes beyond the
Geobacter outer membrane.

The biofilm, i.e. a cohesive aggregate of billions of cells,
can conduct electrons. Specifically, networks of micro-
bial nanowires that are able to conduct electrons, course
through the biofilm and can move charges over significant
distances, e.g. thousands of times the bacterium’s length.
Since these protein filaments can conduct electrons along
their length, the biofilm is turned into a sort of a metal that
can conduct electrons as far as the biofilm can be extended.
The problem of electrical isolation of a group of redox-
active organisms can be associated with the problem often
found in human cities. Namely, the electrical isolation can
cause local variations in potential, thus resulting in dam-
age to individuals and potentially to the whole group of
organisms. Therefore, the group can benefit from a link to
a common ground [24]. The redox-active enzymes can be
spatially distributed on a biofilm, which provides a struc-
tural matrix for enzymes, metal and mineral substrates.

Cultivation and analysis of individual bacterial species
has been at the core of experimentalmicrobiology formore
than a century. Microbial communities rather than indi-
vidual species generally control process rates and drive
key biogeochemical cycles. Recently, a community of sev-
eral bacteria has been investigated. Cellobiose served as
the carbon and energy source for Clostridium cellulolyticum,
whereasDesulfovibrio vulgaris andGeobacter sulfurreducens
derived carbon and energy from the metabolic products
of cellobiose fermentation and were provided with sul-
phate and fumarate respectively as electron acceptors [25].
Recent experiments have shown that Geobacter ’s electric
nanowire has still large evolutionary potential, which we
believe can be explored using optimisation algorithms.
Lovleywas able to evolve a new strain that dramatically in-
creases power output per cell and overall bulk power [26].
The concentrations needed on the electrode to produce
electricity are reached faster, due to the biofilm being thin-
ner than earlier strains. In these experiments, he added a
tiny pushback current in the electrode in order to select
those Geobacter species able to press harder to get rid of
the electrons given by the additional current. As a result,
with respect to the original strain, he obtained the evolu-
tion of a microorganism able to press at least eight times
more electric current across the electrode [27].

4. Conclusions

In this paper, we have highlighted the links between
bacterium communication, gene duplication, lateral gene
transfer events and metabolic complexity. The methodol-
ogy we propose allows to optimise simultaneously several
objectives, i.e. the output of the metabolic ‘‘computation’’
versus communication carried out by bacteria. Population
effects (a group of same cells) and community effects (a
group of different cells) can be also investigated with opti-
misation techniques.

A Pareto front can help investigate the trade-off be-
tween computation and communication. This is equivalent
to identify the optimal size of the ‘‘communication’’ part of
themetabolic network, namely the set of reactions respon-
sible for movement aimed at seeking food. For instance,
while the whole metabolic network of the Geobacter is re-
sponsible for the bacterial computation, the subset of re-
actions responsible for communication is involved in the
production of biofilm. This approach highlights the com-
plex behaviour that may arise in molecular machines;
although nano communication networks and synthetic bi-
ology are still in their infancy, we foresee the potentiali-
ties to build and optimise synthetic organisms that could
be designed for optimising specific communication perfor-
mances and networks.

In groups of multiple interacting microbial popula-
tions, also called microbial consortia, the recent work by
Ji et al. [28] showed that when the consortium of bacte-
ria is thought of as consisting of logic operating cells, it can
compute Boolean functions. In a group of interacting bac-
teria, the balance of the intra-cellular amount of energy
depends on the properties of the genes and their codon
usage, whereas the global production of energy may de-
pend on the topology of the network [29]. These recent
findings, if coupled with our work, lead to speculate that
colonies of bacteria can compute both the optimal intra-
cellular configuration for energy production and the
optimal design for the energy production of thewhole con-
sortium.

References

[1] P. Liò, S. Balasubramaniam, Opportunistic routing through conjuga-
tion in bacteria communicationnanonetwork, NanoCommunication
Networks 3 (2012) 36–45.

[2] Yu Liu, Masato Yoshioka, Katsumi Homma, Toshiyuki Shibuya,
Yuzi Kanazawa, Generation of yield-embedded pareto-front for
simultaneous optimization of yield and performances, in: Design
Automation Conference, DAC, 2010 47th ACM/IEEE, IEEE, 2010,
pp. 909–912.

[3] Trent McConaghy, Pieter Palmers, Georges Gielen, Michiel Steyaert,
Simultaneous multi-topology multi-objective sizing across thou-
sands of analog circuit topologies, in: Proceedings of the 44thAnnual
Design Automation Conference, ACM, 2007, pp. 944–947.

[4] Scott A. Becker, Adam M. Feist, Monica L. Mo, Gregory Hannum,
Bernhard Ø. Palsson, Markus J. Herrgard, Quantitative prediction
of cellular metabolism with constraint-based models: the cobra
toolbox, Nature Protocols 2 (3) (2007) 727–738.

[5] Jole Costanza, Giovanni Carapezza, Claudio Angione, Pietro Lió,
Giuseppe Nicosia, Robust design of microbial strains, Bioinformatics
28 (23) (2012) 3097–3104.

http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref1
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref2
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref3
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref4
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref5


C. Angione et al. / Nano Communication Networks 4 (2013) 155–163 163
[6] J.D. Orth, T.M. Conrad, J. Na, J.A. Lerman, H. Nam, A.M. Feist, B.Ø.
Palsson, A comprehensive genome-scale reconstruction of E. coli
metabolism 2011, Molecular Systems Biology 7 (1) (2011).

[7] O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel,
K. Kavanagh, U. Alon, Evolutionary trade-offs, pareto optimality,
and the geometry of phenotype space, Science 336 (6085) (2012)
1157–1160.

[8] David R. Riley, Karsten B. Sieber, Kelly M. Robinson, James Robert
White, Ashwinkumar Ganesan, Syrus Nourbakhsh, Julie C. Dunning
Hotopp, Bacteria–human somatic cell lateral gene transfer is
enriched in cancer samples, PLOS Computational Biology 9 (6)
(2013) e1003107.

[9] P. Liò, N. Paoletti, M.A. Moni, K. Atwell, E. Merelli, M. Viceconti,
Modelling osteomyelitis, BMC Bioinformatics 13 (14) (2012) S12.

[10] T. Massingham, L.J. Davies, P. Lió, Analysing gene function after
duplication, Bioessays 23 (10) (2001) 873–876.

[11] A.M. Turing, The chemical basis of morphogenesis, Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences 237 (641) (1952) 37–72.

[12] D. Bray, et al., Proteinmolecules as computational elements in living
cells, Nature 376 (6538) (1995) 307–312.

[13] C. Angione, G. Carapezza, J. Costanza, P. Lió, G. Nicosia, Computing
with metabolic machines, in: Andrei Voronkov (Ed.), Turing-100,
in: EPiC Series, vol. 10, 2012, pp. 1–15.

[14] Nigel Cutland, Computability: An Introduction to Recursive Function
Theory, Cambridge University Press, 1980.

[15] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 2nd, 2001.

[16] R. Brent, J. Bruck, 2020 computing: can computers help to explain
biology? Nature 440 (7083) (2006) 416–417.

[17] Soloveichik, et al., Computation with finite stochastic chemical
reaction networks, Natural Computing 7 (4) (2008) 615–633.

[18] D.R. Lovley, T. Ueki, T. Zhang, N.S. Malvankar, P.M. Shrestha, K.A.
Flanagan, M. Aklujkar, J.E. Butler, L. Giloteaux, A.E. Rotaru, et al.,
Geobacter: the microbe electric’s physiology, ecology, and practical
applications, Advances in Microbial Physiology 59 (2011) 1.

[19] Derek R. Lovley, Kelly P. Nevin, A shift in the current: new
applications and concepts for microbe-electrode electron exchange,
Current Opinion in Biotechnology 22 (3) (2011) 441–448.

[20] Korneel Rabaey, René A. Rozendal, Microbial electrosynthesis
revisiting the electrical route for microbial production, Nature
Reviews Microbiology 8 (10) (2010) 706–716.

[21] BenjaminErable, NarcisM.Duţeanu,MakarandMadhaoGhangrekar,
Claire Dumas, Keith Scott, Application of electro-active biofilms,
Biofouling 26 (1) (2010) 57–71.

[22] Mohamed Y. El-Naggar, Greg Wanger, Kar Man Leung, Thomas D.
Yuzvinsky, Gordon Southam, Jun Yang, Woon Ming Lau, Kenneth
H. Nealson, Yuri A. Gorby, Electrical transport along bacterial
nanowires from shewanella oneidensis mr-1, Proceedings of the
National Academy of Sciences 107 (42) (2010) 18127–18131.

[23] Janet B. Rollefson, Camille S. Stephen, Ming Tien, Daniel R. Bond,
Identification of an extracellular polysaccharide network essential
for cytochrome anchoring and biofilm formation inG. sulfurreducens,
Journal of Bacteriology 193 (5) (2011) 1023–1033.

[24] Timothy S. Magnuson, How the xap locus put electrical zap in
G. sulfurreducens biofilms, Journal of Bacteriology 193 (5) (2011)
1021–1022.

[25] Lance Miller, Jennifer Mosher, Amudhan Venkateswaran, Zamin
Yang, Anthony Palumbo, Tommy Phelps, Mircea Podar, Christopher
Schadt, Martin Keller, Establishment and metabolic analysis of a
model microbial community for understanding trophic and electron
accepting interactions of subsurface anaerobic environments, BMC
Microbiology 10 (1) (2010) 149.

[26] Hana Yi, Kelly P. Nevin, Byoung-Chan Kim, Ashely E. Franks, Anna
Klimes, Leonard M. Tender, Derek R. Lovley, Selection of a variant
of G. sulfurreducens with enhanced capacity for current production
in microbial fuel cells, Biosensors and Bioelectronics 24 (12) (2009)
3498–3503.

[27] Pier-Luc Tremblay, Zarath M. Summers, Richard H. Glaven, Kelly
P. Nevin, Karsten Zengler, Christian L. Barrett, Yu Qiu, Bernhard O.
Palsson, Derek R. Lovley, A c-type cytochrome and a transcriptional
regulator responsible for enhanced extracellular electron transfer
in G. sulfurreducens revealed by adaptive evolution, Environmental
Microbiology 13 (1) (2011) 13–23.

[28] Weiyue Ji, Handuo Shi, Haoqian Zhang, Rui Sun, Jingyi Xi, Dingqiao
Wen, Jingchen Feng, Yiwei Chen, Xiao Qin, Yanrong Ma, et al., A
formalized design process for bacterial consortia that perform logic
computing, PLOS ONE 8 (2) (2013) e57482.
[29] S. Balasubramaniam, P. Liò, Multi-hop conjugation based bacteria
nanonetworks, IEEE Transactions on Nanobioscience 12 (2013)
47–59.

Claudio Angione is a Ph.D. student in Computer
Science at the University of Cambridge. He re-
ceived the B.Sc. degree in 2008 and theM.Sc. de-
gree in 2011 in Applied Mathematics from the
University of Catania. Hewas awarded the ‘‘Anile
Prize 2011’’ for the best thesis at the Department
of Maths and Computer Science of the Univer-
sity of Catania. He has been recently selected
for the Heidelberg Laureate Forum. His current
research interests include synthetic biology,
computational immunology,multi-objective op-

timisation in bacteria, organellemodels, and computationwithmolecular
machines.

Giovanni Carapezza graduated in Telecommu-
nications Engineering at University of Catania
in July 2011 with a thesis entitled ‘‘Services
and potentialities of Generalised Multi Proto-
col Label Switch’’. From July 2011 to date, he
is working for the University of Catania as re-
search student on Electronic Design Automa-
tion/Computer Aided Design (EDA/CAD) and
Computational Biology. He has taken part in the
European research project that aims to increase
solar power use and to deliver ‘‘Energy for a

Green Society’’ (ERG). Finally, he has coauthored four refereed conference
papers with proceedings.

Jole Costanza is a Ph.D. student in Computer
Science at the University of Catania, supervised
by Prof. Giuseppe Nicosia. She received a B.Sc.
degree in Biomedical Engineering in 2007 and
a M.Sc. degree in Bioengineering in 2010 from
the University of Padua. She is currently work-
ing on computational methods for Systems and
Synthetic Biology (sensitivity analysis, robust-
ness analysis, combinatorial multi-objective
optimisation), Reverse Engineering for Gene
Regulatory Networks and Artificial Immune Sys-

tems.

Pietro Lió is a Senior Lecturer in the Computer
Laboratory, which is the department of Com-
puter Science of the University of Cambridge. He
is a member of the Artificial Intelligence group
of the Computer Laboratory. He has an interdis-
ciplinary approach to research and teaching due
to the fact that he holds a Ph.D. in Complex
Systems and Non Linear Dynamics (School of In-
formatics, Dept. of Engineering of the Univer-
sity of Firenze, Italy) and a Ph.D. in (Theoretical)
Genetics (University of Pavia, Italy). Affiliations

and links: Cambridge Computational Biology Institute; Cambridge Neu-
roscience, Infectious diseases.

Giuseppe Nicosia (Ph.D. in Computer Science) is
Associate Professor of Computer Science at the
University of Catania, Italy. He is currently in-
volved in the design and development of opti-
misation algorithms for circuit design and solar
cells, a joint research project supported by the
Sharp and STMicroelectronics. He is coauthor of
more than 70 papers in international journals
and conference proceedings, and eight coedited
books. He has chaired several international con-
ferences, summer schools and workshops in the

research areas of natural computing, optimisation and electronic design
automation (EDA). His primary research interests are design and analy-
sis of optimisation algorithms, sensitivity analysis, robustness, computa-
tional systems biology, and EDA.

http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref6
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref7
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref8
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref9
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref10
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref11
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref12
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref13
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref14
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref15
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref16
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref17
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref18
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref19
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref20
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref21
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref22
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref23
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref24
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref25
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref26
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref27
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref28
http://refhub.elsevier.com/S1878-7789(13)00045-8/sbref29

	Design and strain selection criteria for bacterial communication networks
	Introduction: communications in bacteria
	Flux balance analysis
	Designing properties using Pareto front guidance
	The mobilome: conjugation for network communication

	Targets for designing bacterial communication
	Communication and Turing Machines
	Metabolic networks as vehicles for communication

	Geobacter: network communication through bio-films
	Useful Geobacter properties for communication applications

	Conclusions
	References


