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Abstract—In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size,

characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front

analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle,

we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the

Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the

metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has

shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from

cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis

useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

Index Terms—Mitochondrion, chloroplast, hydrogenosome, sensitivity analysis, multiobjective optimization, robustness analysis

Ç

1 INTRODUCTION

IN recent years, the fields of mitochondria, chloroplasts,
and other mitochondrion-like organelles (MLO), for

example, hydrogenosome and mitosome, have witnessed
an extraordinary expansion. This is mainly due to the
identification of the pivotal role that mitochondria play in
human disease and ageing [1], to the synergy shown by
chloroplasts and mitochondria in energy output [2], to the
development of new organelle proteomics tools [3], and to
the discovery of novel factors involved in organelle
division, movement, signaling, and adaptation to varying
environmental conditions [4]. Remarkably, no examples of
examined eukaryotes lacking a mitochondrion-related
organelle exist [5].

It is now widely accepted that all extant eukaryotes are
descended from an ancestor that had a mitochondrion.
In anaerobic eukaryotes, this organelle has been modified
into either a hydrogenosome, which continues to generate
energy for the host cell, or a mitosome, which does not.
Therefore, the evolutionary history of chloroplasts and
mitochondria are intertwined, and a better knowledge of
the pathways in both organelles and vestigial organelles
(e.g., apicoplast [6] and hydrogenosome [7]) may lead to
drug discovery. Interestingly, when a mitochondrion and
other organelles coexist in the same cell, their volume and
activity can be strongly related with one another. In these
cells, mitochondria exhibit behaviors that are absent in
other eukaryotic cells [8].

Chloroplasts, mitochondria, hydrogenosomes, and
other MLO share many common features. For instance,
the hypothesis of Colocation for Redox Regulation (CoRR)
predicts that the regulatory coupling operated continuously
before, during, and after the transition from prokaryote to
eukaryotic organelle [9]. According to the CoRR hypothesis,
these organelles would lose their genomes in case of loss of
the redox and proton-motive machinery of oxidative
phosphorylation. Moreover, they are “smart” energy-
transducing devices and make decisions on the basis of
environmental changes affecting redox poise. CoRR oper-
ates today and will continue to operate in living cells, being
a necessary condition for the compatibility of energy
conversion with genome function. Finally, these organelles
exploit a common pathway to harness energy for biological
purposes. This process is called chemiosmotic coupling,
since it involves both the chemical bond-forming reactions
that generate ATP (chemi) and the membrane-transport
processes (osmotic).

Although mitochondria and chloroplasts are two different
organelles with different functions, it is useful to compare the
electron-transport processes in mitochondria, which convert
energy from chemical fuels, with those in chloroplasts, which
convert energy from sunlight. Chloroplasts produce glucose
from sunlight energy. This glucose then transfers to the
mitochondrion for aerobic respiration. The function of
chloroplasts is basically to make food, by trapping light
energy to convert water and carbon dioxide to form oxygen
and glucose (this process is called photosynthesis). It is
noteworthy that the plant produces most of its ATP from
aerobic respiration, not from photosynthesis. Conversely, the
function of mitochondria is to provide energy for the cell’s
use. Mitochondria extract the energy from the glucose
molecules, and store it in ATP molecules; the ATP molecules
will then diffuse out of the mitochondrion for the cell’s use.

We aim at investigating and comparing the complexity
of these organelles through a common framework that
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. C. Angione and P. Lió are with the Computer Laboratory, University of
Cambridge, United Kingdom.
E-mail: {claudio.angione, pietro.lio}@cl.cam.ac.uk.

. G. Carapezza, J. Costanza, and G. Nicosia are with the Department of
Mathematics & Computer Science, University of Catania, Italy.
E-mail: {carapezza, costanza, nicosia}@dmi.unict.it.

Manuscript received 20 Aug. 2012; revised 30 June 2013; accepted 9 July
2013; published online 1 Aug. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2012-08-0212.
Digital Object Identifier no. 10.1109/TCBB.2013.95.

1545-5963/13/$31.00 � 2013 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



includes single- and multiobjective optimization, robust-
ness analysis, and sensitivity analysis. In addition to the
possible goals and methods reviewed by Handl et al. [10],
the optimization of biological networks has been recently
performed using mixed integer approaches [11]. The
multiobjective optimization in organelles such as the
mitochondrion may be related to the different tasks of
maximizing the ATP or the heat, or intermediate com-
pounds of the Krebs cycle to provide input for biosynthetic
pathways (e.g., the amino acids synthesis). Therefore, we
propose the investigation of the evolution from the
ancestral bacterium in light of their multiobjective optimi-
zation. Pareto fronts are related to the sensitivity and
robustness of an organism, and represent a key tool for the
metabolic analysis.

The ODE models we take into account are the
chloroplast model by Zhu et al. [12] and the mitochondrion
model by Bazil et al. [13]. First, we perform a sensitivity
analysis to identify the most important components of both
organelles. Second, we optimize the ability of these
organelles to produce CO2 and ATP, respectively. The
maximization of these metabolites allows for the optimiza-
tion of both metabolic networks. Finally, we assess the
fragileness of the multioptimized metabolic networks using
the robustness analysis [14]. Our framework focuses on the
fundamental properties of these organelles, and their
integration into broader physiological processes. The paper
will emphasize the commonalities and the differences in the
energy production in mitochondria, chloroplasts, and
hydrogenosomes, in light of their evolution from bacterial
endosymbionts. A comprehensive analysis of these orga-
nelles through a multiobjective optimization approach
highlights engineered endosymbiotic relationships between

different species and, therefore, represents a valuable tool
for synthetic biology [15].

Finally, we propose a model for the hydrogenosomes in
Trichomonas vaginalis, with the aim of understanding
similarities and differences relative to other organelles
(e.g., which pathways are retained from mitochondria,
and which ones are lost). The hydrogenosome was first
noted in Tritrichomonas foetus as a component that produced
hydrogen and ATP. The origin of this organelle remains a
matter of debate, and an extensive analysis on its energy
production could give new hints in understanding its
ancestral relationship to mitochondria. Thus, using our
model, we carry out a flux balance analysis (FBA) [16]
taking into account the ATP production as one of the
objective functions to optimize.

2 A COMMON OPTIMIZATION FRAMEWORK

FOR ORGANELLES

In Fig. 1, we propose the steps of a common pipeline to
analyze organelles. Although not reported in the figure, it
is noteworthy that organelles are not closed systems.
Indeed, they receive input signals from the nuclear
genome, thus several proteins of the cell are transported
to them. In every parameterized dynamical system with a
given initial condition, each value assumed by the vector of
parameters in the parameter space corresponds to a
trajectory of the system in the state space. The system
converges to the steady state through a dynamics, thus the
steady state acts as an attractor [18]. In the ODE models
described in this paper, the parameter and state spaces are
Euclidian spaces. As regards the size of the state space, we
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Fig. 1. The common framework to analyze organelles. We start from the complete model of the organelle, whose state space reflects its metabolism.
We reduce the organelle model (A) to a metamodel (B) in which we can analyze its high-dimensional parameter space and evaluate the sensitivity of
all its parameters by perturbing them in a neighborhood of the original values. Then, we perform a multiobjective optimization (C) on the organelle
metabolism, to find the Pareto-optimal front involving two or more metabolites of interest (e.g., ATP and NADH); the genetic algorithm underlying the
optimization allows us to reach the optimal Pareto front, i.e., to move the front toward the optimal point (e.g., maximum ATP and NADH), which is
unfeasible if the two objective are negatively correlated with one another. Finally, we evaluate the robustness (D) of the Pareto-optimal solutions.
Kitano [17] has remarked on the need for a general theory of biological robustness. According to him, a system is robust if it maintains its
functionality, even if it transits through a new steady state or if it is unstable (a). According to Gunawardena [18], the robustness to change of initial
conditions is called dynamical stability; for instance, one can evaluate the differences in the dynamics of the system (c). According to Stracquadanio
and Nicosia [14], the robustness of a system is the number of robust trials over the total number of trials; a perturbation trial is said to be robust when
the perturbation is in the robust neighborhood (b) such that the output remains in a given interval.



expect the following inequalities to hold: 1) ancestral
bacterium > mitochondrion, and 2) chloroplast > hydro-
genosome > apicoplast.

To apply the sensitivity analysis in the whole parameter
space, we build an organelle metamodel using SUMO
toolbox [19]. In this paper, we apply it to the mitochondrial
model proposed by Bazil et al. [13] to obtain a less accurate
model that can be deeply analyzed even if the number of
inputs is very large. In our case, we are able to investigate
the combined effect of 42 input parameters on the ATP yield
and to perform a sensitivity analysis by means of the
Bayesian Automatic Relevance Determination (ARD). Since
the parameter space is 42-dimensional, through a metamo-
del we avoid the computational cost of running the whole
mitochondrial model in the parameter space. The para-
meters of the metamodel belong to a neighborhood of the
parameter values of the original model. Since the metamo-
del is an approximation of the real model, given the same
initial condition, the trajectories in the state metaspace differ
from those in the original space. Thanks to the adaptive
sampling of the original model, the attractor (i.e., the
steady-state point) is the same as that of the original model.
Therefore, we can easily investigate the sensitivity of the
parameters and obtain a rank that indicates to what extent a
change in each parameter affects the behavior of the system.

The multiobjective optimization exploits the concept of
Pareto optimality to maximize two or more desired
metabolites in the organelle, thus obtaining new artificial
strains. The choice of the target metabolites depends on the
organelle under investigation. For instance, in mitochondria
we will analyze ATP and NADH, the energy molecules in
the cell, while in chloroplasts we will focus on the CO2

uptake, which drives the photosynthesis. They are the most
important products in these organelles and, when max-
imized, allow them to work at the optimal configuration. In
particular, the multiobjective optimization turns out to be
very useful when we need to maximize simultaneously two
or more metabolites responsible for the energy production.

Finally, the robustness analysis assesses the fragility of a
strain obtained through the optimization when it undergoes
small perturbations, both external (changes in the nutrients)
and internal (changes in the metabolism). One can define
the robustness region, in which a change in the initial
condition does not prevent the algorithm to reach the same
steady state.

We apply this methodology to mitochondria and chlor-
oplasts not only to provide meaningful insights into the
production or uptake of their key metabolites, but also to
obtain a comparison based on Pareto fronts between these
two organelles.

3 COMPARISON BETWEEN MITOCHONDRIA AND

CHLOROPLASTS OPTIMIZATION MODELS

In this section and in the following ones, we compare the
behavior, the sensitivity, the optimization, and robustness
of the mitochondrion and chloroplast models.

In mitochondria, electrons from a carbohydrate food
molecule degrading to CO2 are transferred through the
membrane by a chain of electron carriers, and finally reduce

oxygen gas (O2) to form water. Since they flow down this
path from a high-energy state to a low-energy state,
electrons release free energy, which allows to drive a series
of three H+ pumps in the inner mitochondrial membrane.
The third H+ pump catalyzes the transfer of the electrons to
O2. The mechanism of electron transport between two sites
is carried out by diffusible molecules that can pick up
electrons at one location and deliver them to another
location [20]. In mitochondria, the first electron carrier,
NAD+, is able to take up two electrons (plus an H+) to
become NADH, a water-soluble small molecule that ferries
electrons from the sites where food molecules are degraded
to the inner mitochondrial membrane. All the proteins in
the membrane and all the small molecules involved in the
electron transfers form an electron-transport chain.

In chloroplasts, the transfer of electrons is driven by
photosystems. In these membrane components, a pigment
called chlorophyll captures the energy from the light and,
through the C3 cycle, produces the energy-storage mole-
cules ATP and NADH. This energy allows to transfer
electrons. Remarkably, while the mitochondrion consumes
O2, the chloroplast generates it. This is due to the fact that
the direction of transfer in chloroplasts is opposite to that in
mitochondria. Indeed, electrons are taken from water to
produce O2, and they are donated to CO2 to synthesize
carbohydrate (the donation occurs through NADPH, which
is closely related to NADH).

The mitochondrial model [13] consists of 73 DAEs, each of
which represents either a constraint or the rate of variation of
a metabolite involved in bioenergetic reactions of mitochon-
dria. The state variables were initialized to achieve the
fully oxidized state [13]. In this work, we calculated the
metabolites content that leads to maximize the matrix
content of ATP and NADH, maintaining constant oxidized
cytochrome c, reduced cytochrome c, ubiquinone, ubiquinol,
NADmtx, NADHmtx, GTPmtx, GDPmtx (mtx ¼ matrix), the
mitochondrial membrane potential (1 mV), the matrix O2

(0.0652 nmol/mg), the total CO2 (21.4762 nmol/mg) and
Ca2þ. We initialized Ca2þ with five different values to
evaluate the behavior of mitochondria. First, we used
Ca2þ ¼ 10�5, i.e., the standard condition, and then 10�4,
10�6, 10�5 � 1:5, and 10�5=1:5 nmol/mg.

As regards chloroplasts, in the model by Zhu et al. [12]
the photosynthetic metabolism is modeled through equa-
tions for conserved quantities (e.g., total leaf nitrogen) and a
set of 31 linked ODEs, each of which describes the rate of
change in a metabolite. The C3 metabolism takes place in
four compartments: thylakoid membranes, thylakoid lu-
men, chloroplast, stroma, and cytosol. Photoreactions and
electron carriers are embedded in the membrane, while
protons accumulate in the lumen. Carbon reduction and
starch synthesis pathways are located in the stroma with
sucrose synthesis in the cytosol. The phosphate translocator
transports metabolites through the chloroplast membrane.
The molar concentrations of the metabolites required in the
kinetic equations are the state variables. If necessary, the
total amount of a specific compound per unit leaf area is
expressed by multiplying its concentration by the volume of
the compartment per unit leaf area.
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4 SENSITIVITY ANALYSIS

It is extremely important to focus the in silico design on a set

of restricted significant parameters, to decrease the complex-

ity of a future biological implementation. In this research

work, we perform sensitivity analysis both on mitochondria

and on chloroplasts. We infer that the most sensitive

enzymes govern the key reactions in the metabolism, and

they are directly linked with the energy production.

4.1 Pathway Sensitivity Analysis in a Chloroplast
Model

The representation of the chloroplast as a set of linked ODEs

gives a mathematical description of the chemical process

and, successively, the Morris analysis gives useful insights

on linear and nonlinear contribution of enzymes to the

Carbon metabolism. In the set of ODEs of the model by Zhu

et al. [12], we have evaluated the most sensitive components

through a one-factor-at-a-time (OAT) method proposed by

Morris [21]. According to the OAT method, only one input is

perturbed while the others are kept at their nominal value.

We consider our pathway as a black box with certain inputs

and certain outputs. Each step-variation computed for each

input is an elementary effect calculated as ui ¼ ðP ðx1; . . . ;

xi þ �i; . . . ; xkÞ � P ðx1; . . . ; xi; . . . ; xkÞÞ=�i, where P repre-

sents the pathway, ðx1; . . . ; xi; . . . ; xkÞ is the nominal vector,

and �i is the perturbation affecting the ith input. For each

factor, we collect an ensemble of elementary effects and

compute their mean �i and the standard deviation �i. We

expect a high global influence from those inputs with a high

�i, and a highly nonlinear or counterintuitive behavior from

those inputs with a high �i.
For each enzyme (i.e., input), we use the concentration

reported in Table SI1, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TCBB.2013.95, as nominal value [22], comput-

ing 20 different factor levels, each of which is altered

10 times. We perturb each nominal value by a factor of 10

(both up and down). The sensitivity analysis shows that 11

(out of 23) enzymes are extremely sensitive [23], namely

RuBisCO, PGA kinase, GAP dehydrogenase, FBP aldolase,

FBPase, SBP aldolase, SBPase, Phosphoribulose kinase,

ADPGPP, Phosphoglycolate phosphatase, and GDC. These

enzymes showed also high values of �i (i.e., 1 < �i < 15)

when compared to all of the others (i.e., 10�4 < �i < 1).
To validate these results, we take into account the

interaction map defined by the photosynthesis pathway. In

particular, we expect that the sensitive enzymes represent

the hubs of the pathway. Indeed, the Roswall’s community

detection method [24] confirmed our assumptions, detect-

ing RuBisCO and GAP dehydrogenase as the most strongly

regulated enzymes of the C3 cycle (both enzymes are light

regulated). Another key enzyme is Transketolase because it

uses as substrates Fructose-6-P (which otherwise would exit

from the cycle toward the starch biosynthetic pathway) and

3-P-Glyceraldehyde (produced by GAP dehydrogenase).

These enzymes correspond to the main nodes of the

C3 cycle leading to the other biosynthetic pathways [22].

4.2 Sensitivity Analysis in a Mitochondrial Model

As in the sensitivity analysis carried out on the chloroplast
model, the representation of the mitochondrion as 73
Differential Algebraic Equations (DAEs) and, successively,
the Morris analysis gives useful insights into linear and
nonlinear contribution of the metabolite concentrations
involved in the bioenergetic reactions of mitochondria.
For each metabolite (i.e., input), we use the fully oxidized
state as nominal values, computing 20 different factor
levels, each of which is altered 10 times. We perturb each
nominal value by a factor of 10 (both up and down). The
sensitivity analysis results are shown in supplementary
information, available online, (Table SI2, third and fourth
column). The metabolites are sorted from the most sensitive
to the least sensitive. Only the total adenosine monopho-
sphate (AMP) content and the total fumarate (FUM) content
can be considered insensitive variables as they have values
of � and � near zero. The other variables are sensitive or
extremely sensitive. Notably, the most sensitive variable is
the free potassium (Kþ) content.

4.3 Bayesian ARD Sensitivity on Mitochondrial
Parameters

After the sensitivity analysis performed on the initial
concentrations, our idea is to investigate the model by
Bazil et al. [13] by evaluating how the choice of the
adjustable parameters influences the output. The right
value of the parameters is hard to determine experimen-
tally. After the publication of the mitochondrial model, the
authors proposed an update of the vast majority of the
model parameters after the modifications outlined by Wu
et al. [25] due to the change to the function used to compute
the ionic strength. These corrections witness the fact that
both the estimation and the sensitivity of parameters
deserve a closer look.

Currently, the most commonly used estimation proce-
dures rely only on nonlinear least squares or on Monte
Carlo techniques based on optimization algorithms (both
have been used by Bazil et al. in the mitochondrial model).
These approaches are computationally expensive and often
poorly suited for statistical inference. Alternative methods
that use the P-spline theory to estimate the state functions
and the ODE parameters were proposed by Ramsay et al.
[26]. When the number of parameters is high, the
sensitivity analysis can detect the most important ones.
Therefore, one can put more effort in estimating the key
parameters, rather than using the same technique for
all the parameters. Nevertheless, because of the high-
dimensional parameter space of the mitochondrial model,
typical approaches (e.g., the OAT method adopted for
the chloroplast) may not accurately assess the sensitivity of
the system; furthermore, the simulation code needed to
evaluate the output in the whole parameter space is
computationally expensive. Using a surrogate model in
the way described in this paper, we are able to globally
investigate a high-dimensional parameter space, to identify
all the sensitive and uncertain points.

Using the SUMO toolbox [19], we build a surrogate
mathematical model that mimics the behavior of the
mitochondrion over the complete parameter space.
The metamodel adaptively selects as few data points as
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possible in the parameter space, and reproduces the output
as accurately as possible. This way, we are able to explore
the design space and investigate how the combined effect of
all the parameters influences the output of the model. We
use a least squares support vector machine (LS-SVM) to
build a continuous model from the discrete ATP output in
the 42-dimensional parameter space. LS-SVM is a learning
method that recognizes patterns from given data points [27].
Support vector machines, introduced within the statistical
learning theory, is a powerful methodology for solving
problems such as function estimation, which has also led to
kernel-based learning methods.

Given the parameters pi, i ¼ 1; . . . ; 42, proposed by Bazil
et al. we consider the parameter space

Q
i ½0; 2pi�. LS-SVM

adaptively samples the parameter space to build a con-
tinuous model of the output, by minimizing the least
squares error between the model and the output evaluated
on the points already sampled in the parameter space. The
regression is carried out by weighting the inputs so as to
obtain the most probable model for the given data points.
The first 20 points are selected randomly in the parameter
space so as to start the training of the model. Then, the
parameter space is sampled dynamically; thus, the surro-
gate model is built and refined as more points are available.
The procedure is halted when the least squares error
becomes smaller than a fixed tolerance.

Starting from the surrogate model, we perform a
sensitivity analysis by means of the Bayesian Automatic
Relevance Determination (ARD) [28]. This allows to in-
vestigate the sensitivity of the parameters and understand
how a change in a parameter affects the behavior of the
whole system. ARD is used to determine the subset of the
most relevant inputs for the proposed model. We assign a
different weighting parameter to each dimension in the
kernel inference. Each input is assigned a value �2. In each
step, LS-SVM performs a backward selection by removing
the input with the largest optimal �2. For every step, the
Bayesian cost criterion is computed, based on the singular
value decomposition (SVD) of the kernel matrix.

To rank the parameters, the effect of each parameter
must be compared to the effect of all the others. To this end,
in each step of the ARD algorithm a parameter is removed

according to a minimal cost criterion. Although at each step
a parameter is removed with the smallest cost at that step, it
may happen that at a step after the smallest cost is larger.
This way, we obtain a list of inputs in decreasing order of
relevance (see Table SI3, available online).

According to the Bayesian ARD, the Hexokinase max rate
and the F1F0 ATP synthase activity are the parameters
having the largest influence on the production of ATP in
mitochondria. To analyze more thoroughly the role of these
two key players, in Fig. 2, we plot the concentration of ATP
over the total concentration of adenine nucleotides, accord-
ing to our metamodel. The minus sign indicates a production
of ATP. Since the mitochondrial species for adenine nucleo-
tides are conserved in the model, the following algebraic
equations of conservation holds: ½ATP � þ ½ADP � ¼ Atot. On
the z-axis we plot 106ð½ATP �=AtotÞ ¼ 106ð1� ½ADP �=AtotÞ.

In Fig. 2b, we show the metamodel curve along with the
185 points sampled by SUMO to create the metamodel. The
plot confirms that F1F0 ATP synthase activity is a highly
sensitive parameter. In particular, there are some regions of
the parameter space of F1F0 ATP synthase activity, and
specifically the neighborhood of 1� 109, in which SUMO
finds points considered as outliers that cause a fast decrease
of the ATP production.

To have a closer look at the model behavior as function
of the parameter values, we build a second-order and a
third-order polynomial surrogate models using 250 and
1,028 samples (respectively) in the parameter space. Let us
denote by p the vector of the parameter values. For the
second-order approximation, the ATP is given by

a0 þ c>pþ p>Ap; ð1Þ

where a0 ¼ �5:98, while c, p, and A are defined in Figs. SI1
and SI3, available in the online supplemental material, and
the > symbol denotes the transpose operation. The heat
map of A is shown in Fig. SI2 in supplementary informa-
tion, available online. For the sake of completeness, in
Fig. SI4, available online, we report the curve for the third-
order polynomial metamodel.

The sensitivity applied to the mitochondrial model
allows to draw the same conclusion as that applied to the
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Fig. 2. Both (a) and (b) refer to the ATP production [nmol/mg] (times 106) as function of the Hexokinase max rate [nmol/mg/min] and the F1F0 ATP
synthase activity [nmol/M/min/mg]. The minus sign indicates that the mitochondrion is consuming ATP. In (b), we highlight that the 185 points
sampled by SUMO include some outliers not considered in the construction of the metamodel.



chloroplast model. In both cases, the sensitive enzymes
are the key players in the pathway of these organelles,
i.e., the enzymes directly associated with the production
of energy.

5 MULTIOBJECTIVE OPTIMIZATION

The methodology we propose in this section allows to
optimize simultaneously several biotechnological targets,
i.e., the output of the computation carried out by
organelles. This approach highlights the complex behavior
that may arise in metabolic networks, and hints at future
investigation of the concept of optimality in organelles (see
online supplemental material). A multiobjective optimiza-
tion is needed when the system performs multiple tasks,
and a given phenotype cannot be optimal at all of them
(e.g., when two tasks are in contrast with each other).

Let us assume to have r objective functions f1; . . . ; fr to
optimize. The problem of multiobjective optimization can
be formalized as follows:

max
x
ðf1ðxÞ; f2ðxÞ; . . . ; frðxÞÞ>; ð2Þ

where x is the variable in the search space. Without loss of
generality, we have assumed that all the functions have to
be maximized; indeed, minimizing a function fi can be
thought of as maximizing �fi.

The solution of a multiobjective problem is a potentially
infinite set of points, called Pareto optimal solutions or
Pareto front. A point y� in the solution space is said to be
Pareto optimal if there does not exist a point y such that fðyÞ
dominates fðy�Þ, i.e., fiðyÞ > fiðy�Þ; 8i ¼ 1; . . . ; r, where f is
the vector of r objective functions to optimize in the
objective space. We use the Pareto-front concept to find the
set of designs that represent the best tradeoff between two
or more requirements. The Pareto front can also show
interesting tradeoff knee points, considered by Higuera
et al. [29] as preferred solutions in metabolic networks.
The Pareto front is the set of all the phenotypes that remain
after eliminating all the feasible phenotypes dominated on
all tasks [30].

5.1 Optimization of the Chloroplast Model

Once the 11 sensitive enzymes have been identified through
the sensitivity analysis, we employ the multiobjective
optimization algorithm on the “sensitive domain” made up
of the 11 most sensitive enzymes (x 2 IR11). We use parallel
multiobjective optimization (PMO2) [31] to find all those
sensitive enzyme concentration vectors x̂ ¼ ðc1; c2; . . . ; c11Þ
such that when x̂ has the other 12 enzyme values are kept at
their nominal value, the resulting CO2 uptake function is
maximized and the nitrogen consumption is minimized:

max
x̂2IR11

ðf1ðx̂Þ;�f2ðx̂ÞÞT ; ð3Þ

where f1 represents the CO2 uptake, while f2 ¼ ð
P11

i¼1
x̂½i��Mi

Ki
Þ

represents the nitrogen consumption, Ki is the catalytic
number (or turnover number), and Mi the molecular weight
of the ith enzyme. Gaining higher CO2 uptake rates while
employing less nitrogen means absorbing more CO2 while
consuming less “leaf-fuel”; this renders the metabolism

cycle more efficient. Hence, our search for x̂ must take into
account a tradeoff between maximal CO2 uptake rate and
minimal nitrogen employment. Fig. 3 shows the Pareto front
made up of the solutions that simultaneously maximize f1

and minimize f2. In the simulation we adopt the actual CO2

atmospheric concentration, i.e., 270 �mol mol�1.

5.2 Optimization of the Mitochondrial Model

To optimize multiple objectives, we used the Nondomi-
nated Sorting Genetic Algorithm II, also known as NSGA-II
[32], that exploits evolution among a population of
individuals in the search space to obtain the best offspring.

Here, we optimize the concentration of Adenosine
triphosphate (ATP) and Nicotinamide adenine dinucleo-
tide (NADH) in the matrix compartment in the model of
the mitochondrial bioenergetics [13]. Since NADH and
ATP represent the most important energy molecules, by
means of our computational framework we seek and
investigate their tradeoff and the conditions (basal con-
centrations of metabolites in mitochondria) such that ATP
and NADH are maximized.

Mitochondria convert free energy in substrates (carbo-
hydrate and fatty acid derived) into the free energy of the
ATP hydrolysis reaction. The Gibbs free energy of ATP
hydrolysis reaction (ATP() ADPþ Pi) is equal to �G0 ¼
�RTlnð ½ATP �

½ADP ��½Pi�Þ, and is negative, therefore the ATP
hydrolysis is an exoergonic reaction, i.e., the energy content
of the products is less than that of reactants. During the
reaction there is a release of energy. In this work, we
investigate the ATP concentration in the matrix compart-
ment of the mitochondria because this molecule has an high
potential to transfer the phosphoric group. Therefore,
optimizing ATP concentration in the matrix compartment
would mean optimize the free energy transduction.

The model we adopt consists of 73 DAEs to represent the
mitochondrial bioenergetics [13]. In particular, the model
accounts for 35 biochemical reactions, including the
oxidative phosphorylation, the electron transport system,
the tricarboxylic acid cycle and related reactions,
the Naþ=Ca2 þ cycle and the Kþ-cycle.

The variable space is defined as the space of the feasible
initial concentrations of metabolites. We first initialize the
population and compute the fitness score, based on
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Fig. 3. Multiobjective optimization of two conflicting pressures in the
chloroplast: maximization of the CO2 uptake rate versus minimization of
the protein-nitrogen consumption.



the output functions we aim at optimizing. The individuals
of the initial population can be initialized in different ways,
for example, randomly or assigning specific values to all
the concentrations. In our analysis, we assign specific
values—the fully oxidized state reported in the original
work [13]—from which we start searching optimal points.
We maintain fixed all the other variables and constants of
the model (such as temperature to 25�C and the water
volume in buffering, intermembrane and matrix space and
thermodynamics constraints) varying only the initial con-
centration of metabolites when solving the DAEs system.

An individual is a feasible vector of concentrations of
metabolites. Once a vector of concentrations of metabolites
is fixed, the objective functions are calculated by solving
the DAEs system. For each ATP and NADH curve, we
evaluate its integral, considering a single measure. Each
individual is assigned a rank, and between two solutions
with different nondomination ranks we prefer the one with
the lowest rank. After sorting the individuals according to
the level of nondomination, the fitness score of each
individual is computed by evaluating the objective func-
tions associated with it.

Successively, we carry out three steps in a loop: 1) In a
binary tournament selection process, two individuals are
selected at random, their fitness is compared and the
individual with the best fitness is selected as a parent for
the next population; 2) the algorithm selects a number of
parents (i.e., the best individuals) equal to the half of the
population, and then mutates them using a mutation
operator and a crossover operator; 3) a novel population
of the same size of the initial population is formed selecting
the best individuals from the parents and the offspring.
Each individual of the final population will be a point of the
Pareto front in the objective space.

Before the optimization, at the fully oxidized state we
obtain NADH ¼ 1:5987 � 10�10 nmol/mg (formation) and
ATP ¼ �0:0014 nmol/mg (consumption). Then, each me-
tabolite involved in the metabolic network varies in
concentration depending on the reactions. The metabolite
undergoes several processes, i.e., formation and degrada-
tion, transport, and cellular utilization. For every metabo-
lite, a mass balance equation depends on the fluxes of
input and output in the compartment. The variation of the
metabolite concentration depends on the amount of mass
formed and consumed. Therefore, when we maximize the
concentration of ATP in the matrix, we can obtain positive
values (indicating a formation in the compartment of that
molecule) or negative values (indicating that the molecule
is needed from outside the system). After the optimization,
we obtain the Pareto-optimal points shown in Fig. 4. The
Pareto fronts and the reported values of NADH and ATP
represent an asymptotic analysis. They describe how the
mitochondrial metabolism evolves when it needs to
optimize simultaneously the concentrations of ATP and
NADH. The Pareto curve can be useful to analyze the
trend of the mitochondrial processes that have to satisfy
specific constraints.

Furthermore, we analyze more thoroughly two parti-
cular Pareto-optimal solutions, i.e., the point with max-
imum ATP synthesis (and lowest NADH formation) and

the point with maximum NADH formation (and lowest
ATP synthesis). After setting Ca2þ ¼ 10 � 10�6 nmol/mg,
the first solution provides NADH ¼ 6:17 � 10�15 nmol/mg
(that can be considered null) and ATP ¼ 2027:34 nmol/mg,
with overproduction of SUCmtx, SCoAmtx, CoASHmtx, Hþmtx,
and ATPims (ims ¼ intermembrane space, mtx ¼ matrix)
and underproduction of ISOCmtx, aKGmtx, MALmtx, CITims,
ISOCims, aKGims, SUCims, MALims, and GLUcyt, ASPcyt

(cyt ¼ cytosolic space).
The second solution provides NADH ¼ 6:07 � 10�6 nmol/

mg and ATP ¼ �3734:6 nmol/mg (consumption), over-
producing the following metabolites: Hþmtx, ISOCmtx,
SUCmtx, and ATPims, whereas CITmtx, MALims and
AMPims, PYRims, GLUims;cyt and aKGims are totally con-
sumed. These results indicate that the mitochondrion is
requesting an amount of ATP that is not available in
the matrix. With respect to the state where no ATP is
available in the matrix, a negative value of concentration in
the model can be thought of as the change of ATP
concentration needed to produce the corresponding NADH.
Both the extreme solutions are shown in Fig. 5(top).

Increasing the matrix calcium content from 10�5 to
10�4 nmol/mg causes ATP synthesis and NADH forma-
tion to stop, and both molecules are consumed by the
metabolism (see Fig. 4, red signs). As in the previous
case, we analyze the two extreme Pareto-optimal points in
Fig. 5(bottom). This achievement can demonstrate that a
perturbation in mitochondrial Ca2þ homeostasis has major
implications for cell function at the level of ATP synthesis
and NADH generation.

If Ca2þ increases by a little step, i.e., it is fixed at 1:5�
10�5 nmol/mg, we obtain an increase in NADH formation,
while ATP remains constant (see Fig. 4, green signs). If Ca2þ

drastically decreases to 10�6 nmol/mg, there is a lower
ATP synthesis (see Fig. 4, blue circles). Conversely, with
Ca2þ ¼ 1

1:5� 10�5 nmol/mg, both objectives are maximized.

6 ROBUSTNESS ANALYSIS

The concept of robustness is frequent in nature, and it
seems to be one of the driving forces of evolution [14]. The
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Fig. 4. Pareto fronts of the maximization of NADH versus ATP with
different Ca2þ concentration in the mitochondrion. The inset plot reports
results for Ca2þ ¼ 10�6 and Ca2þ ¼ 1:5� 10�5 nmol/mg and has a
different y scale.



ability of a system to preserve its behavior despite internal
or external perturbations is a crucial design principle for
any biological and synthetic system [17], [18]. The basic
principle of the robustness analysis consists of defining the
perturbation as a function �ð�; �Þ, where � applies a
stochastic noise � to the system � and generates a trial
sample � . We assume that the noise is defined by a random
distribution and we generate a set T of trial samples
� ¼ �ð�; �Þ. Let us define:

� �; �; �; �ð Þ ¼ 1 if j� �ð Þ � � �ð Þj � �
0 otherwise;

�
ð4Þ

where � is the reference system, � is a metric (or property), �
is a trial sample of the set T , and � is a robustness threshold.
The definition of this condition makes no assumptions
about the function �, which is not necessarily related to
properties or characteristics of the system; however, it is
implicitly assumed that it is quantifiable. Each element � 2
T is said to be robust to the perturbation, due to stochastic
noise �, for a given property (or metric) �, if the condition
�ð�; � ; �; �Þ ¼ 1 holds.

The robustness of a system � is defined as the number of

robust trials � 2 T , with respect to the property �, over the

total number of trials (jT j). Formally, the robustness of a

system is a dimensionless quantity defined as

� �; T ; �; �ð Þ ¼
P

�2T � �; � ; �; �ð Þ
jT j : ð5Þ

We note that � is a function of �, so the choice of this
parameter is crucial and a reasonable value is often chosen
after conducting several computational experiment.

6.1 Robustness in the Chloroplast Model

During the “in vitro” implementation, our chloroplast must
be robust with respect to possible experimental errors or
unpredicted unknowns. Although it is possible to find
maximal values for the CO2 uptake, efficiency of transcrip-
tion promoters cannot be easily foreseen. Moreover,
transcription, translation, and enzyme efficiency can vary
depending on many factors, even of environmental origin.
In other words, the enzyme concentration is subjected to
noise, making it difficult to ensure a certain concentration
of each enzyme of the C3 cycle at a given time. For this
reason, it is fundamental to know the extent to which the
achieved CO2 uptake will be preserved in case of enzyme
level perturbation. Applying the concept of robustness to
the C3 cycle allows to calculate the limits of enzyme
perturbations at which the system property of interest (a
given level of CO2 uptake) is maintained. Among read-out-
equivalent designs, one should prefer the one with the most
CO2 uptake read-out preserved when the enzyme input
noise increases.

Let �x 2 IR23 be an enzyme partitioning and f : IR23 ! IR
a function computing the expected CO2 uptake rate value of
�x. Given an enzyme partition �x� obtained by perturbing �x,
the condition � for the robustness of enzymes partitions is
defined by adapting the general definition (4) as

�ð�x; �x�; f; �Þ ¼
1 if j fð�xÞ � fð�x�Þ j� �
0 otherwise;

�
ð6Þ

where the robustness threshold � denotes the maximum
percentage of variation allowed from the nominal CO2

uptake value.
The ensemble T has been generated using a Monte-Carlo

algorithm. We consider both mutations occurring on all the
enzymes (global robustness analysis) and mutations on one
enzyme at time (local robustness analysis) [14]. We adopt a
maximum perturbation of 10 percent for each enzyme
concentration. We generate an ensemble of 5 � 103 trials for
the global robustness analysis, and 200 trials, for each
enzyme, for the local robustness analysis. In all the
experiments, we fix � ¼ 5% of the nominal uptake rate
value. In Fig. 6, we show the robustness landscape of each
enzyme. Remarkably, most enzymes do not change sig-
nificantly the uptake rate value, despite the presence of
noise. This analysis seems to confirm that the C3 cycle lies
in a robust configuration.

The results of our methodology, in terms of new enzyme
concentrations for maximal CO2 uptake, are presented in
Table SI1, available online. Our optimization results take
into account enzyme kinetic parameters, largely obtained as
an average of different plant values, as done in [12]. Such
results consider, hence, an ideal plant. In a future research
effort, we plan to consider the preparation of specific
optimization models for a given C3 crop, as rice, soybean,
wheat or barley by taking into account the specific enzyme
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Fig. 5. Ratio of metabolite concentrations optimized by the multiobjective
algorithm compared to the initial concentrations for maximum ATP
synthesis, in red, and maximum NADH formation, in green. The calcium
content is Ca2þ ¼ 10�5 nmol/mg (top) and Ca2þ ¼ 10�4 nmol/mg
(bottom), respectively. In the inset, we focus on the ½0; 3� y-axis range.



kinetic parameters in these plants, and the relative condi-
tion of temperature and water availability typical of their
areal distribution. Moreover, the study and the use in
optimization models of enzymes kinetic parameters of
plants adapted to specific climatic conditions would be a
starting point for further biotechnological targets, for
example, to improve photosynthetic efficiency of crops in
specific environmental conditions. As a matter of fact, the
C4 photosynthesis type represents itself an adaptation to
lower CO2 atmospheric concentration. The possibility of
redesigning the energy circuits of the cells, such as those in
the chloroplast and in the mitochondrion, will make it
possible to obtain biotechnological solutions for energy
demand and organelle-related diseases.

6.2 Robustness in the Mitochondrial Model

Also in the case of “in vitro” implementation of
mitochondrial models, the parameters must be robust
with respect to possible experimental errors or unpre-
dicted unknowns. Consequently, we apply the concept of
robustness also to the optimized mitochondria. In this
case, among read-out-equivalent designs, one should
prefer the one that ensures the largest NADH formation
and ATP consumption read-out preserved when the noise
in the input concentrations of metabolites increases.

As in the previous section, the problem can be formalized
as follows: Let �x 2 IR50 be the array of the concentrations
of metabolites and f : IR50 ! IR2 a function computing the

expected NADH formation and ATP consumption values
corresponding to �x. Given a metabolite partition �x� obtained
by perturbing �x, the condition � for the robustness of
metabolite partitions is defined by adapting the general
definition (4) as made in the (6), where the robustness
threshold � denotes the maximum percentage of variation
allowed from the nominal NADH formation and ATP
consumption values. The remarks on the ensemble T , the
mutations, the perturbation, and the threshold in chlor-
oplasts apply also to mitochondria. The results of our
methodology, in terms of new metabolite concentrations for
maximal NADH formation and ATP consumption, are
presented in Table SI2, available online. Our results high-
light that the natural mitochondrion (C1) is the most robust,
since it features a global value of 26.94 percent and a local
value of 9.00 percent (referred to the concentration of free
potassium). The C2 and the C3 mitochondria are less robust
than the natural mitochondrion, both globally and locally.

Remarkably, we need to find a tradeoff between the
performance of the optimization and the robustness of the
solution. Since the multiobjective optimization returned
thousands of solutions (the number can decrease if the
number of objectives increases) and the robustness analysis
is computationally expensive, the choice of the most robust
and optimal solution can require a high computational time.
A good tradeoff workaround could be of thinking the
robustness index as another objective of the optimization.
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Fig. 6. Robustness analysis. Robustness of the individual enzymes for the natural chloroplast. The enzymes are shown in the same order as in
Table SI1, available online. For each enzyme, as mentioned in Section 6.1, we create 200 trials by perturbing the corresponding enzyme
concentration, and we show the distribution of the CO2 uptake rate values obtained. The y values are in percentage (percent), that is, the percentage
(out of 200 trials) that obtains the corresponding value (	0:1) on the x-axis. The chloroplast is robust to perturbations of the enzyme concentration if
the values of CO2 uptake rate are close to the nominal value (15:48 �mol

m2s ) in the majority of the perturbation trials. For example, it is more robust with
respect to perturbation of GAP dehydrogenase concentration and it is less robust with respect to perturbation of RuBisCO concentration.



In addition to this, we conducted an additional robust-
ness analysis on the natural mitochondrion perturbing the
42 parameters listed in Table SI3, available online. The
formulation of the problem is identical, where the vector �x
in (6) represents the parameters. The results are presented
in the last column of Table SI3, available online.

7 A MODEL OF THE HYDROGENOSOME

In several unicellular eukaryotes, including ciliates, fungi,
and trichomonads, instead of the traditionally studied
mitochondria, there is an alternate organelle called hydro-
genosome. Hydrogenosomes are anaerobically functioning
ATP-producing organelles of mitochondrial origin that
represent a particular adaptation of mitochondrial metabo-
lism, and possess the ability of producing molecular
hydrogen by using protons as electron acceptors [7]. One
of the best studied hydrogenosomes, and thus the one that
we consider in our analysis, is that of the sexually
transmitted human parasite Trichomonas vaginalis.

To investigate the hydrogenosome with the same
techniques introduced before, we propose a model of the
hydrogenosome metabolism in T. vaginalis and we evaluate
the ATP flux, comparing it with that of mitochondria.
The model we propose is a FBA model [16] that contains
all the main reactions occurring in the organelle [33], [34]
(see Table SI4, available online), as well as reactions dealing
with the import of serine, glycine, pyruvate, and malate into
the hydrogenosome. Although our model already shows
interesting behaviors, we plan to extend it by adding new
reactions. To our knowledge, no hydrogenosome models
are present in literature; thus, we believe our model will
have great value as the best description that we have to date
of the hydrogenosome, and will provide a foundation upon
which more accurate models can be arrived at. A complete
model of the hydrogenosomal metabolism would be of
great biological relevance in the design of new antiparasitic
drugs [35].

We specify the reaction network of the hydrogenosome
through the LIM package of R, which allows to generate the
mass balance for each component. Moreover, we estimate
the optimal reaction rates in the flux balance analysis
approach [16]. (See the online supplemental material for
details on the modeling technique for the hydrogenosome.
The source code of the model and all the required libraries
are available from the authors at request.) In Fig. 7, we show
the multiobjective optimization carried out in the flux
balance analysis framework.

To obtain the optimal solution in all the feasible two-
objective optimizations, we randomly sample the solution
space. In Fig. 8, we display the pairs plot and mark the
optimal solution with a red dot. Most reactions are coupled
together; it happens frequently that a reaction can occur
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Fig. 7. Hydrogenosome. We report the reactions of its metabolism and their fluxes (mmolh�1 gdW�1) on the x-axis. A line next to a reaction
represents all the feasible fluxes for that reaction, while a point represents the value of the specific solution proposed in this configuration of the
hydrogenosome. The maximization of the ATP yield (a) implies the consumption of all the H2, CO2, and NADH in the organelle. The maximization of
CO2 (b) implies also the maximization of H2, but requires the maximum import of malate, pyruvate, and glycine. Moreover, it impairs the NaFe
reaction, thus keeping the NADH at the initial value. The two-objective optimization of ATP and NADH (c) causes the impairment of the Hydro
reaction, thus the hydrogenosome cannot produce H2. It is, thus, evident the need for a Pareto-optimal tradeoff between energy and H2 production.

Fig. 8. Hydrogenosome. Two-objective optimization carried out on
metabolites and reaction fluxes. The points represent a MCMC sampling
of the reaction network carried out with 20,000 iterations, and allow to
find tradeoffs among the maximizations carried out in Fig. 7. When two
reactions are mostly uncorrelated with one another, all the solutions are
feasible, thus the sampling tends to a filled square (e.g., the output of H2

and CO2). Conversely, when two reactions show correlation, the sample
of the square reveals their relationship. For instance, the NADH output
and the H2 output are in contrast with each other. The red dot is the
optimal point.



only when the substrates, which are products of another
reaction, are available. For instance, the ATP production
depends on the Acetate production, since ATP requires
SuccinylCoA, which is a product of the same reaction that
produces Acetate. It is noteworthy that a few reactions are
in conflict with all the other reactions. For instance, the
NaFe reaction, which produces NADH, is in conflict with
Hydro, which produces H2. Indeed, the last row of the pairs
plot shows that the NADH production is in conflict with
the H2 production. The presence of a feasible point in this
plot does not imply that the hydrogenosome metabolism,
even if optimized, is able to reach that point. Notably, the
CO2-NADH plot shows that the hydrogenosome is versatile
and can produce both, but it cannot specialize in producing
only one metabolite, since there are few points near the axes
and the Pareto front exhibits a higher curvature than the
other fronts.

8 CONCLUSIONS

Both mitochondria and chloroplasts are energy-converting
organelles in the cytoplasm of eukaryotic cells; while
chloroplasts capture and convert energy of sunlight in
plants, mitochondria synthesize energy (ATP). The genetic
and the energy-converting networks of mitochondria and
chloroplasts are descended, with little modification, from
those of their ancestor bacteria. In this regard, we can
explore how the Pareto-front analysis related to the energy
metabolism can provide interesting insights into the
evolutionary dynamics leading to the formation of orga-
nelle structures in the single- and multicelled life. Pareto
fronts combined with sensitivity and robustness are useful
tools to understand the steps of the cellular evolution and
the engulfments and specialization of organelles. In Fig. 9,
we show the putative evolution through the Pareto-front
analysis. The whole figure should be seen in an evolu-
tionary perspective, where the passage from the engulf-
ment to the full functionality of the organelle has required
a number of adaptive evolutionary steps and a similar less
optimized system working outside the organelle. During
the optimization, i.e., the maximization of a metabolite, the
Pareto front of an organism undergoes both expansion and
contraction phases. These steps can be numerically
assessed using the hypervolume [36], to quantify the
evolution of the Pareto front. We intend to make use of
machine learning algorithms to predict whether a protein
enters a membrane according to the transient peptide, and
measures on Pareto fronts (e.g., hypervolume) can avail or
disprove these predictions.

We also discussed the concept of robustness and
parameter sensitivity for the models of organelles, and in
general for compartmentalized structures in the cell. While
cross comparing the biological systems, we showed also a
methodological variety to analyze them. We are delighted to
report that the modeling of metabolic processes, which is a
thriving field of research, has two immediate and important
benefits: 1) a comprehensive insight into the energy balance
in the cell, and 2) the improved understanding of the
processes that shape health and diseases, thus providing
the possibility to design new drugs.

Following our framework and extending it, in the near
future we plan to design, analyze, and optimize the

metabolism of systems composed of different species living
and interacting in the same organism, as introduced by
Cottret et al. [37] in the case of two endosymbiotic bacteria.
In this paper, we also analyzed the metabolite production of
organelles and identified interventions needed to over-
produce metabolites of interest. We performed an in silico
design that can also explore the reaction network and seek
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Fig. 9. Putative Pareto-front evolution associated with the engulfments in
cell evolution. The double-membrane organelle is a bacterium that has
been engulfed by an single-membrane eukaryote (A). After an
engulfment (B), the guest organelle shows a concave Pareto front that
expands along one axis, since it specializes in the production of one
metabolite, thus losing versatility and decreasing the area under the
front. Conversely, the hosting cytoplasm specializes in the production of
all the other metabolites, thus it shows a convex Pareto front. The
process is repeated for the second and third engulfment (C), after which
the organelles are specialized in the production of a metabolite each.
Since a slight reduction of metabolite 1 dramatically increases the
production of metabolite 2, the organelle 1 can further specialize (see C)
in the next evolutionary step. Organelle 3 is the most specialized, and
therefore it could be thought of as an apicoplast, with Metabolite 5
representing the IPP. The histogram (D) highlights the increase of
specificity, gradient, and signaling cost in the evolutionary steps.



in the search space the solutions that optimize two or more
objectives simultaneously. Our technique can be extended
using global and local sensitivity measures based on partial
derivatives [38], which allow to obtain rankings of para-
meters according to their influence. This kind of analysis
could easily highlight the complementarity of different
metabolic networks. For instance, mitochondria and chlor-
oplasts are (usually) both found in plants, and are part of
the same functional pipeline: starting from CO2, the
photosynthesis in the chloroplast creates glucose that enters
the mitochondrion to create ATP.

Although in this paper we have considered the single
organelle, in cells there are usually many organelles that
could differ for activity depending on their location.
Therefore, we expect that applications of compartmentali-
zation in synthetic biology (e.g., the use of organelles to
optimize a cell) will increase in the near future.
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[3] P. Lió and N. Goldman, “Modeling Mitochondrial Protein
Evolution Using Structural Information,” J. Molecular Evolution,
vol. 54, no. 4, pp. 519-529, 2002.

[4] T. Kuroiwa, H. Kuroiwa, A. Sakai, H. Takahashi, K. Toda, and R.
Itoh, “The Division Apparatus of Plastids and Mitochondria,” Int’l
Rev. of Cytology, vol. 181, pp. 1-41, 1998.

[5] A. Shiflett and P.J. Johnson, “Mitochondrion-Related Organelles in
Parasitic Eukaryotes,” Ann. Rev. of Microbiology, vol. 64, pp. 409-
429, 2010.
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