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ABSTRACT

Existing coverage-based fuzzers usually use the individual control
flow graph (CFG) edge coverage to guide the fuzzing process, which
has shown great potential in finding vulnerabilities. However, CFG
edge coverage is not effective in discovering vulnerabilities such
as use-after-free (UaF). This is because, to trigger UaF vulnera-
bilities, one needs not only to cover individual edges, but also to
traverse some (long) sequence of edges in a particular order, which
is challenging for existing fuzzers. To this end, we propose to model
UaF vulnerabilities as typestate properties, and develop a typestate-
guided fuzzer, namedUAFL, for discovering vulnerabilities violating
typestate properties. Given a typestate property, we first perform
a static typestate analysis to find operation sequences potentially
violating the property. Our fuzzing process is then guided by the
operation sequences in order to progressively generate test cases
triggering property violations. In addition, we also employ an in-
formation flow analysis to improve the efficiency of the fuzzing
process. We have performed a thorough evaluation of UAFL on
14 widely-used real-world programs. The experiment results show
that UAFL substantially outperforms the state-of-the-art fuzzers, in-
cluding AFL, AFLFast, FairFuzz, MOpt, Angora and QSYM, in terms
of the time taken to discover vulnerabilities. We have discovered
10 previously unknown vulnerabilities, and received 5 new CVEs.
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1 INTRODUCTION

Software defects are pervasive [10] and may be exploited by ma-
licious parties [38]. These software vulnerabilities have become
fundamental threats against the software security. With the devel-
opment of mitigation techniques [11, 33], many security vulnera-
bilities such as buffer overflow [12], have become harder to exploit.
An exception is the use-after-free (UaF) vulnerability. There are still
very few mitigation techniques deployed in production environ-
ments to defend against UaF vulnerabilities [42]. This has made UaF
a significantly more vulnerable target for exploitation [19, 37, 44].
The UaF vulnerability happens when thememory is accessed after it
has been freed previously, whichmay cause data corruption [38, 40],
information leaks [19], denial-of-service [7], and arbitrary code ex-
ecution attacks [5]. According to recent reports [19, 42], about 80%
of the UaF vulnerabilities in the NVD database were rated critical
or high in severity. In contrast, only about 50% of the heap buffer
overflow vulnerabilities were considered as high severity.

Compared with other vulnerabilities (e.g., the stack/heap buffer
overflow vulnerability), UaF vulnerabilities are generally considered
more difficult to detect [19]. The main reason is that, to successfully
trigger a UaF, a sequence of operations need to be executed in
the specific order — first allocating the memory, then terminating
the lifetime of the memory, and finally dereferencing the memory.
These operations may not share locality in the code base, which
makes the detection much more challenging.

Nevertheless, there exist some automated techniques for detect-
ing and defending against UaF vulnerabilities. Static analysis-based
techniques [30, 42] suffer from false positives, especially when deal-
ing with real-world software systems. This is due to the fact that
how to perform scalable and precise inter-procedural alias analysis
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remains an open problem. Imprecise results from the alias analy-
sis could also affect the effectiveness of some run-time detection
mechanisms, such as FreeSentry [44] and DangNULL [19]. These
techniques monitor the pointers to each memory location and re-
place them with invalid pointers once the memory is freed. If such
an invalidated pointer is accessed, the program will subsequently
crash, preventing an attacker from exploiting the vulnerability.

On the other hand, dynamic techniques, e.g., greybox fuzzing [18],
which less likely produce false positives, have been shown effective
in detecting memory-related vulnerabilities. Specially, AFL [47],
libFuzzer [24] and the fuzzing infrastructure ClusterFuzz [17] have
discovered more than 16,000 vulnerabilities in over 160 open source
projects [17, 47]. However, existing techniques are not effective in
detecting UaFs as shown in our experiments (c.f. Section 5.3). Exist-
ing coverage-based fuzzers, e.g., AFL [47], usually use the individual
Control Flow Graph (CFG) [36] edge coverage to guide the fuzzing
process. Unfortunately, CFG edge coverage is not so effective in
discovering UaFs. This is because, to trigger UaF vulnerabilities,
one needs not only to cover individual CFG edges, but also to tra-
verse some long sequence of edges in a particular order, which is
very difficult for existing coverage-based fuzzers. For example, the
state-of-the-art grey-box fuzzers MOpt [25] and ProFuzzer [43] dis-
cover very few UaF vulnerabilities, according to their experimental
results.

To address this challenge, we propose a typestate-guided fuzzer,
named UAFL, for discovering vulnerabilities violating certain type-
state properties. Our insight is that many common vulnerabilities
can be seen as the violation of certain typesate properties. For exam-
ple, the operation sequence, ⟨malloc → free→ use⟩, is a witness of
the typestate property violation shown in Fig. 3; therefore, it may
trigger the UaF vulnerability. Similarly, ⟨nullify→ dereference⟩ is a
witness for the null pointer dereferencing. Although our approach
is generally applicable to all vulnerabilities which can be modelled
by typestate property violations, we focus on one representative
exemplar, UaF, in this paper. We first perform typestate analysis
to identify operation sequences potentially violating the typestate
properties. We then instrument the operation sequence coverage
into the target program. Based on the information collected from
the instrumentation, we propose two strategies to improve the ef-
fectiveness of the fuzzer: (1) we use the operation sequence coverage

as the feedback to guide the test generation to progressively cover
the operation sequences (c.f. Section 4.2), and (2) we deploy an
information flow analysis to infer how test inputs affect the pro-
gram states (c.f. Section 4.3), and use such information to design an
efficient mutation strategy by avoiding unnecessary mutations.

We have implemented UAFL and evaluated it on 14 widely-used
programs with diverse functionalities. UAFL significantly outper-
forms AFL [47], AFLFast [4], FairFuzz [21], MOpt [25], Angora [9],
QSYM [46]. In particular, UAFL achieves, respectively, a speedup
of 3.25×, 3.16×, 2.63×, 3.35×, 6.00×, and 3.80× to detect the vul-
nerabilities, compared to existing fuzzers AFL, AFLFast, FairFuzz,
MOpt, Angora, and QSYM. Moreover, we have discovered 10 pre-
viously unknown UaF vulnerabilities in real-world programs, for
them we have received 5 CVEs. All the new vulnerabilities have
been confirmed.

The contribution of this work is summarized as follows.

1 void main() {
2 char buf[7];
3 read(0, buf, 7)
4 char* ptr1 = malloc(8);
5 char* ptr2 = malloc(8);
6 if(buf[5] == 'e')
7 ptr2 = ptr1;
8 if(buf[3] == 's')
9 if(buf[1] == 'u')

10 free(ptr1);
11 if(buf[4] == 'e')
12 if(buf[2] == 'r')
13 if(buf[0] == 'f')
14 ptr2[0] = 'm';
15 ...
16 }

Figure 1: An example simplified fromUaF(CVE-2018-20623).

• We propose a typestate-guided fuzzer for discovering vulnerabili-
ties violating certain typestate properties. It specifically addresses
the challenge in detecting vulnerabilities triggered by specific
sequences of operations (e.g., the UaF vulnerabilities), where we
use operation sequence as guidance to progressively generate
test cases violating the typestate properties.
• Wedesign an effectivemutation strategy customized for typestate-
guided fuzzer and apply quantitative information flow analysis
to help improve the overall performance of fuzzing process.
• Wehave implemented the proposed techniques asUAFL, and eval-
uated its effectiveness on a set of popular real-world programs.
UAFL significantly outperforms the state-of-the-art fuzzers. We
have discovered 10 previously unknown UaF vulnerabilities, 5 of
which have been published as CVEs.

2 MOTIVATING EXAMPLE

In this section, we give an overview of UAFL with a motivating
example, as shown in Fig. 1. This example is simplified from the real-
world program readelf, which contains a UaF vulnerability (i.e., CVE-
2018-20623). Fig. 2(a) shows its control flow graph (CFG), where
the nodes represent the statements marked with their line numbers.
The UaF vulnerability can be triggered when the statements (Lines
4, 7, 10 and 14) are executed temporally. Specifically, the pointer
ptr1 points to the memory allocated at Line 4, and then ptr1 and
ptr2 become aliases at Line 7. The memory pointed by ptr1 (and
ptr2) is freed at Line 10, but accessed again at Line 14 by ptr2.

2.1 Existing Coverage-based Fuzzers

Existing coverage-based fuzzers usually utilize the CFG edge cover-
age to guide the fuzzing process, such as AFL [47]. In this section,
we take AFL for example to illustrate how the CFG edge coverage
is calculated in existing fuzzers. Given a program, AFL needs to
identify the CFG edge (i.e., an edge from one basic block to another
one). To this end, AFL first generates a random ID for each basic
block of the program. Then, a CFG edge ID is calculated based on
the IDs of two basic blocks. For example, regarding edge A→ B,
its ID is calculated: IDA→B = (IDA >> 1) ⊕ IDB , where the shift
operation >> is to preserve the directionality of the edge such that
the ID of edgeA→ B is distinguishable from the ID of edge B → A.

A shared memory shared_mem is used to count the hits of an
edge. For example, shared_mem[IDA→B ]++ represents that hits of
edge A→ B are increased by 1. Actually, the hits of each edge is
divided into 8 buckets: hit 1 time, 2 times, 3 times, 4-7 times, 8-15
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Figure 2: Fuzzing process of AFL and UAFL in the example of Fig. 1.

times, 16-31 times, 32-127 times, and 128-255 times. Given a test
case, AFL generates new test cases by performing mutations on it.
Basically, the new test case is considered as interesting and added
into the test pool for further mutation, if it covers the edges not
found by previous test cases or it touches the new buckets of edges.
Otherwise, this test case is discarded.

2.2 Limitations of Coverage-based Fuzzers

Existing coverage-based fuzzers usually consider the CFG edge’s
coverage individually, and they are limited to track the coverage of a
sequence of edges. For example, regarding a pathA→ B → C , AFL
individually counts the hits of A→ B and B → C , but cannot track
the hits of this path. Hence, existing coverage-based fuzzers are
challenging to detect some vulnerabilities (e.g., UaF and double free),
which violate the temporal memory safetymalloc → free→ use .
This can be also specified as a typestate property, as shown in Fig. 3.

We take the program in Fig. 1 as an example, the UaF vulner-
ability can be triggered if Lines 4 → 7 → 10 → 14 are executed
temporally (i.e., the grey nodes in Fig. 2(a)). Assume the initial seed
is ‘aaaaaaa’ and AFL generates three mutants ‘aaaseen’, ‘aurseaa’
and ‘faraeaa’, as shown in Fig. 2(b). These four program paths cover
all the CFG edges, but none of them can trigger the UaF vulnerabil-
ity. Besides, since all CFG edges have been covered in these four
test cases, their following mutants will be discarded as they cannot
cover new CFG edges.

Considering the edge’s coverage individually (e.g., AFL), it is
highly difficult to generate a test case that can cover 4 → 7 →
10→ 14. We actually ran AFL on this example, and cannot find the
UaF vulnerability within 24 hours.

2.3 Our Approach

Motivated by the aforementioned challenge, we propose a typestate-
guided fuzzer, namedUAFL, which aims to detect the vulnerabilities
violating the typestate property. UAFL works in two phases: types-
tate analysis and typestate-guided fuzzing.

Phase1: Typestate Analysis. Based on the typestate property
(e.g., UaF and double-free in Fig. 3), UAFL firstly performs the
static typestate analysis to capture the operation sequences in the
program, following the temporal relation violating the typestate
property. For example, to discover the UaF vulnerability, UAFL
identifies all operation sequences following the patternmalloc →
free → use . As shown in typestate analysis step of Fig. 2(c), we
present the identified operation sequence (i.e., 4 → 7 → 10 →
14), which satisfies the UaF pattern. This operation sequence first
performs the memory allocation, then goes through the memory
free, and finally reaches the memory use. It is worth noting that
UAFL also performs the pointer alias analysis, e.g., pointers ptr1
and ptr2 may be aliases during the execution.
Phase2: Typestate-Guided Fuzzing. Guided by the operation
sequences, UAFL generates test cases to progressively execute to-
wards the operation sequences. UAFL first performs the instrumen-
tation based on the identified operation sequences. The objective of
instrumentation is to provide the feedback, which can guide UAFL
to generate test cases that can execute towards the operation se-
quences. Fig. 2(c) shows the fuzzing process of UAFL. Assume that
UAFL has also generated the test cases of Fig. 2(b) and covered all
CFG edges. With the operation sequence (i.e., 4→ 7→ 10→ 14)
as guidance, UAFL is able to generate new test cases that gradually
cover the (entire) operation sequence. For example, based on test
case ‘aaaseen’, UAFL may generate a test case ‘auaseen’. This test
case is discarded by AFL, since it does not cover new CFG edges
compared to previous test cases ‘aaaseen’ and ‘aurseaa’. However,
as it covers edge 7→ 10 of operation sequence (i.e.,malloc → free),
UAFL adds it into the test pool for further mutation, By mutat-
ing test case ‘auaseen’, UAFL may further generate new test case
‘f urseen’, which covers the operation sequence 4→ 7→ 10→ 14
(i.e.,malloc → free→ use). Thereby, the UaF vulnerability is dis-
covered. We ran UAFL on this example, and discovered the UaF
vulnerability within about 15 minutes.
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3 TYPESTATE ANALYSIS

In this section, we elaborate on the typestate property and how to
identify operation sequences potentially violating the UaF property
with static typestate analysis.

3.1 Typestate Properties

To facilitate the illustration, we adopt a simplified programming
language model defined as follows.

Definition 1 (Program [14]). A program is a Stmt defined by
the following context-free grammar,

Stmt ::= Var := Var | Var :=malloc() | Var.op()

Stmt; Stmt | if (∗) Stmt else Stmt

Label : Stmt | goto Label

where ∗ denotes a non-deterministic branch, Var are variables which

reference to objects of type T , Op are operations supported by type T .

We adopt the intuitive notion of a path p through a program P
(or P-path): a valid sequence of statements starting at P ’s entry. A
program path may contain operations on multiple objects, and we
can extract multiple operation sequences from it, each per object.
The operation sequence for objects is formally defined as follows.

Definition 2 (Operation Seqences (OSs) for Objects [14]).
Given a P-path p, U(p) denotes the set of object instances created
during this execution, and for any object o ∈ U(p), p[o] denotes the
sequence of operations performed on o during execution of p.

For example, assume that a P-path is p = ⟨a.malloc(),a.insert(),
b .malloc(),b .free(),a.free()⟩, thenwe haveU(p) = {a,b} andp[a] =
⟨a.malloc(),a.insert(),a.free()⟩. An operation sequence for a par-
ticular object can be checked against a typestate property, which is
formally defined as follows.

Definition 3 (Typestate Property [15]). A typestate property
P is a finite state automaton P = (Σ,Q, δ , init,Q \ {err }), where
Σ is the alphabet of observable operations, Q is the set of states, δ
is the transition function mapping a state and an operation to a

successor state, init ∈ Q is a distinguished initial state, err ∈ Q is a

distinguished error state such that for every σ ∈ Σ, δ (err ,σ ) = err ,
and all states in Q \ {err } are accepting states.

We say that q′ is the successor of a state q on operation op when
δ (q, op) = q′. Given a sequence of operations α = ⟨op0, . . . , opn⟩,
we write α ∈ P when α is accepted by P, and we write α < P
when α is not accepted by P.
Typestate Analysis. Regarding typestate properties, a set of ob-
servable operations accepted by the automaton, are valid traces. On
the other hand, a set of operation sequences not accepted by the
automaton, represent invalid traces which potentially violate type-
state properties. Intuitively, vulnerabilities triggered by a sequence
of operations can be captured by typestate properties. Given a type-
state property P, the typestate analysis problem for P is to determine
whether there exists a path p such that ∃o ∈ U(p) : p[o] < P.

3.2 Use-After-Free Detection Problem

In this paper, we focus on detecting the UaF vulnerability, and
Fig. 3 illustrates its typestate property. The alphabet for this prob-
lem consists of three operations, Σ = {malloc, free,use}. When the

Algorithm 1: Typestate Analysis for Use-After-Free

input :A program P
output :A set of operation sequences S

1 S ← ∅;
2 (SM ,M ) ← find_malloc(P );
3 foreach (sm ,m) ∈ (SM ,M ) do
4 A← cal_alias(m);
5 SF ← find_free(A, P );
6 SU ← find_use(A, P );
7 S ← S ∪ {⟨sm , sf , su ⟩ |sf ∈ SF ∧ su ∈

SU ∧ is_reachable(sm , sf ) ∧ is_reachable(sf , su )};

8 return S ;

live dead error
malloc free

use

use/free

Figure 3: Typestate for use-after-free and double free.

memory is allocated, it is in the live state, and can be accessed after-
wards. Once the memory is freed, it becomes dead. Any subsequent
use/free operation on this memory results in an error state. Notice
that, the double-free vulnerability is a special case of UaF. The UaF
detection is to discover test cases that perform the operation sequences

violating typestate property in Fig. 3.

Refer to the example in Fig. 1, a P-path ⟨2 − 5, 6, 7, 8, 9, 10, 11, 12,
13, 14⟩ contains the operation sequence for the memory associated
with ptr1: ⟨4, 7, 10, 14⟩, which violates the given typestate property.

3.3 Use-after-Free Typestate Analysis

Given the typestate property of UaF vulnerability, UAFL performs
the static typestate analysis to identify the operation sequences
violating this property. Algorithm 1 shows the basic idea, which
takes as the input a program P and outputs a set of operation
sequences S violating the property.

For the program P , UAFL first finds all memory allocation state-
ments SM (Line 2), where M is a set of memory objects allocated
at SM . For each memory objectm allocated at sm (Line 3), UAFL
calculates all the aliased pointers A that all point to the memory
object m, with the pointer alias analysis [30, 32] (Line 4). Then,
UAFL identifies all memory free statements that free the memory
objectm by an aliased pointer in A (Line 5). Following the same
way, UAFL finds all memory use statements (Line 6). Finally, the op-
eration sequence ⟨sm, sf , su ⟩ is added into output S (Line 7), where
sm allocates the memory, sf frees the memory which is reachable
from sm , and su uses the memory which is reachable from sf .

Notice that, UAFL adopts the path-insensitive reachability anal-
ysis to perform typestate analysis, and may produce false positives.
Thus, some operation sequences identified in S may not violate the
typestate property. Furthermore, we employ the fuzzing technique
that will confirm whether they actually violate the property.

Example 1. In Fig. 1, two memory objects pointed by pointers ptr1
andptr2 are allocated at Lines 4 and 5. Regardingptr1, we identify the
aliased pointer ptr2 at Line 9. Then, the memory is freed at Line 10 by
ptr1. Lastly, Line 14 accesses the memory again by the aliased pointer

ptr2. Since Line 10 is reachable from Line 4 and Line 14 is reachable
4
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from Line 12, we identify an operation sequence 4→ 10→ 14. To be
more precise, if the memory free and use statements use the aliased

pointers, we incorporate the alias statement into the sequence. As a

result, we obtain the sequence 4 → 7 → 10 → 14 (c.f. Fig. 2(a)),

which violates the property of UaF.

4 TYPESTATE-GUIDED FUZZING

Given the operation sequences (OSs) identified by the static types-
tate analysis, we perform OS-guided instrumentation to steer the
fuzzing process, which can generate test cases to progressively
cover the type-state statement sequences at runtime. UAFL mainly
proposes two strategies to improve the effectiveness of the fuzzer.

(1) We propose the OS-guided mechanism, which can guide UAFL
to generate test cases progressively covering the OSs. For ex-
ample, to cover the sequence 4→ 7→ 10→ 14 in Fig. 2, UAFL
gradually generates the test cases to cover 4→ 7, 4→ 7→ 10,
and 4→ 7→ 10→ 14 in turn.

(2) With the guidance developed, we still require an equipped mu-
tation strategy to coordinate it. UAFL utilizes an information
flow analysis to build the relationship between the input and
variables in the program. Based on the relationship, UAFL adap-
tively mutates the input to change the states of variables. Take
the program in Fig. 1 for example, the second and fourth bytes
of input buf are relevant to Lines 8 and 9, and UAFL mutates
them to generate a test case that can execute Line 10.

4.1 Fuzzing Workflow

Fig. 4 presents the fuzzing workflow. After identifying the OSs
by typestate analysis, we instrument OS-guided information into
the program. To achieve the two proposed strategies, we perform
two kinds of instrumentation: operation sequence instrumentation
and information flow instrumentation (c.f. Section 4.2). During the
fuzzing loop, UAFL first selects a test case (i.e., the seed) from the
test pool (c.f. Section 4.4). UAFL then measures the quality of this
seed, and assigns an energy to it with the power scheduling strategy
(c.f. Section 4.5). Next, we adopt the adaptive mutation strategy to
mutate this seed and generate new seeds. The information flow
analysis is used to produce an adaptive mutation strategy (c.f. Sec-
tion 4.3). After the new seeds are generated, UAFL checks whether
there is new OS coverage by running them. If so, the new seeds
are considered interesting and added into the test pool for further
mutation.

Algorithm 2: UAFL Instrumentation

input :a program P , and a set of operation sequences S
output :an instrumented program P ′

1 let OP_mem, OPE_mem and IFA_mem be shared memory;
2 foreach ⟨s0, . . . , sn ⟩ ∈ S do
3 ⟨b0, . . . , bm ⟩ ← BB_OP(⟨s0, . . . , sn ⟩);
4 foreach bi ∈ ⟨b0, . . . , bm ⟩ do
5 insert OP_mem[IDbi ] ← 1 into bi ;

6 foreach bi ∈ ⟨b1, . . . , bm ⟩ do
7 let Ci be a set of conditional statements between bi−1 and

bi , and bi is control-dependent on Ci ;
8 foreach c j ∈ Ci do
9 let bcj be parent basic block of c j ;

10 tID← 0;
11 for 0 ≤ k < i do
12 if OP_mem[IDbk ] == 1 then
13 tID← tID ⊕ IDbk ;

14 insert OPE_mem[tID ⊕ IDbcj
] ++ into bcj ;

15 let c j be comparison instruction cmp a, b ;
16 insert IFA_mem[IDbcj

] ← a-b into bcj ;

4.2 Instrumentation

Algorithm 2 presents the details of our instrumentation. The in-
puts of the algorithm are a program P and a set of identified OSs
S . The output is the instrumented program P ′. From a high level,
the instrumentation mainly includes three steps: 1) use the shared
memory OP_mem[] to record whether the operation statements
in the OSs are executed; 2) use the shared memory OPE_mem[] to
record whether the OS edges are covered; and 3) use the shared
memory IFA_mem to record the values of variables in the compari-
son instructions for the future information flow analysis (Line 1).
It is worth noting, all elements of the three shared memory arrays
are initialized as zero before each execution.

The instrumentation is conducted on the basic block, for each
OS ⟨s0, . . . , sn⟩ we first get its basic block sequence ⟨b0, . . . ,bm⟩
(Line 3). Note that the length of the basic block sequence may be
less than the original OS, as some statements may belong to the
same basic block. Regarding each bi in the sequence, we instrument
it with OP_mem[IDbi ] ← 1 (Line 5), representing whether bi is
executed or not. The IDbi is the ID of basic block bi (c.f. Section 2.1).

In the second step, we perform the instrumentation to record the
coverage of OSs. Notice that, the OS is different from the P-path
(c.f. Section 3.1). Specifically, an OS edge may need to execute a
sequence of CFG edges in P-path. For example, in Fig. 2(c), to cover
the OS edge 7→ 10, it needs to execute the CFG edges 8→ 9 and
9→ 10. Therefore, it is highly difficult to cover the OS edge directly.
Instead, we should first cover edge 8→ 9, and then 9→ 10.

To provide the fine-grained guidance for covering the OS edge,
we consider its dominated basic blocks. For example, regarding 7→
10 in Fig. 2(c), the parent basic blocks at Lines 8 and 9 in Fig. 1 are
its dominated basic blocks. In particular, for each bi in the sequence,
UAFL analyzes the conditional statements Ci between bi−1 and bi ,
bi is control-dependent on Ci (Line 7). For each statement c j ∈ Ci ,
UAFL gets its parent basic block bc j (Line 9), and instruments bc j
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Algorithm 3:Mutation Probability Calculation
input :an program input x [m], and variables bv [n] at n

instructions
output :mutation probability prob[n]

1 foreach i ∈ {0, . . . ,m − 1} do
2 X = ∅, Y = ∅;
3 foreach j ∈ {0, . . . , k } do
4 x ′ ← mutate(x [i]);
5 b′v ← evaluate(x ′, bv );
6 X ← X ∪ {x ′[i]};
7 Y ← Y ∪ {b′v };

8 E(x [i]) ← maxj∈{0, . . .,n−1} IFStrength(x [i], bv [j], X , Y [j]);

9 minE ←min(E(x [0]), . . . E(x [m − 1]));
10 maxE ←max (E(x [0]), . . . E(x [m − 1]));
11 foreach i ∈ {0, . . . ,m − 1} do
12 prob[i] ← E(x [i ])−minE

maxE−minE ;

with OPE_mem[tID ⊕ IDbcj
]++ (Line 14). Specifically, the variable

tID is used to represent the execution information of ⟨b0, . . . ,bi−1⟩
(Lines 10-13). If bk is executed (i.e., OP_mem[IDbk ] == 1 at Line 12),
its ID is embedded into tID (Line 13). As a result, tID can be used to
guide the execution process toward bc j . tID would have a different
value when a new basic block bk ∈ ⟨b0, . . . ,bi−1⟩ is executed. Thus,
the instrumentation can guide the fuzzing process to gradually
cover the operation sequences, named operation sequence feedback.

In the third step, we preform the information flow instrumenta-
tion to conduct information flow analysis. We assume that the con-
ditional statement is a comparison instruction (e.g., cmp a, b). UAFL
records the values ofa−b by instrumenting IFA_mem[IDbcj

] ← a-b

in the basic block bc j (Line 16).

Example 2. Given the OS edge 7 → 10 in Fig. 2(c), we assume

the basic block sequence is b7 → b10 and their IDs are IDb7 and

IDb10 . When b7 is executed, we instrument b10 with OPE_mem[IDb7 ⊕

IDb10 ]++. Otherwise, the instrumentation OPE_mem[IDb10 ]++ is in-

serted intob10. Thereby, our instrumentation can differentiate whether

b7 is executed or not once we reach b10 at runtime.

4.3 Information Flow Analysis based Mutation

With the OSs and their dominated basic blocks identified, the next
challenge is to find a way to perform the mutations so that the OSs
can be covered quickly. For an instruction cmp a,b, the basic idea is
that: we first identify which part of the input can change the values
of a − b, then we can focus the resource on mutating this part of
the input until its condition is satisfied. We adopt an information
flow analysis to identify the relationship between the input and the
program variables in the comparison instructions.

Information Flow Strength.We follow the information flow
definition in [26], and compute the information flow strength from
variable x to variable y as follows:

IFStrength(x,y,Vx ,Vy ) = H (x,Vx ) − H (x |y,Vx ,Vy ) (1)
where Vx and Vy are the value domains of variables x and y, re-
spectively. H (x,Vx ) denotes the information entropy measuring
the uncertainty of variable x .

H (x,Vx ) = −Σxi ∈Vx P(x = xi )loд2P(x = xi ) (2)

H (x |y,Vx ,Vy ) denotes the conditional information entropy of vari-
able x given the distribution of variable y:

H (x |y,Vx ,Vy ) = −Σyj ∈Vy P(y = yj )

∗[Σxi ∈Vx P(x = xi |y = yj )loд2P(x = xi |y = yj )]
(3)

Algorithm 3 mainly includes two steps. First, we compute the
information flow strength between each byte of the input and
variables (i.e., a − b) in the target comparison instructions (Lines 1-
8). The higher the information flow strength, the stronger this
byte influences the values of the variables. Then, we assign higher
mutation possibility for these bytes of the input, as they are more
likely to change the values of target instructions (Lines 9-12).

The inputs of the algorithm consist of the array x[m] that is a
m-bytes program input and the array bv [n] that includes variables
in n comparison instructions, (i.e., a − b in cmp a,b). Its output is
an array prob that contains the mutation probability for each byte
of input x . For each byte of the input x (Line 1), we compute its
information flow strength to each variable in bv .

We use X and Y to store the sampling values for each byte of
x and each variable of bv (Line 2). We mutate each byte of x (i.e.,
x[i]) with k times (Line 3) and get k values for each variable of bv .
Specifically, after each mutation, we get a new mutant x ′ (Line 4).
By running x ′ (Line 5), we can evaluate the values of variables
bv (c.f. IFA_mem[] at Line 16 in Algorithm 2). After generating
k samples, we compute the information flow strength between
x[i] and each variable of bv (Line 8). Notice that, for each x[i], we
compute n information flow strength values, and the maximum
value is considered as the information flow strength of x[i] (Line 8).

Based on the information flow strength, we calculate the muta-
tion probability for each byte of input (i.e. x[i]) by the normalization
(Line 9-12). Intuitively, if there is strong information flow between
x[i] and the program variables, it has a larger mutation probability.

Example 3. In Fig. 1, given an input buf=‘aaaaaaa’, assume the

target instruction is buf[3] ==‘s’ at Line 8, we consider the informa-

tion flow strength between the bytes of input (i.e., bu f [3] and bu f [6])
and the variable (bu f [3]−‘s’) at Line 8. Assume each byte is mutated

with 10 times (i.e., k = 10 in Algorithm 3), then we figure out the

information flow strength: 3.3 for buf[3] and 0 for buf[6]. It suggests
that there is a strong information flow between bu f [3] and the condi-
tion at Line 8. To cover this branch (i,e, bu f [3] ==‘s’), we will assign
more mutations on buf[3].

4.4 Seed Selection

The seed selection step is to select the next test case from the test
pool such that it is more likely to cover the target OSs with some
mutations on the selected test case. Motivated by the technique [8],
UAFL provides a three-tiered queue, which classifies the generated
seeds into different categories based on their scores. The seeds
in the top-tiered queue have the highest priority, followed by the
second-tiered, and finally the lowest-tiered.

These three tiers are designed based on the OS edge (e.g, 7→ 10
and 10 → 14 in Fig. 2) and CFG edge coverage (e.g., 8 → 9 and
9→ 10). Specifically, given a newly generated seed, (1) if it covers a
new OS edge, we add it into the top-tiered queue, (2) if it covers a
new CFG edge, we add it into the second-tiered queue, otherwise
(3) the seed is added into the lowest-tiered queue. Intuitively, UAFL

6



Typestate-Guided Fuzzer for Discovering Use-after-Free Vulnerabilities ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

favors the seeds that cover new OS edges, since it has more chances
to cover the target OS. If the seed does not cover any new OS edge
but covers a new CFG edge, which are control-dependent on the
statements of the OS (refer to Line 7 in Algorithm 2), it still makes
a small step towards covering the whole OS.

Example 4. In Fig 2, a newly generated test case, which covers the

new OS edge 7→ 10, is prioritized in the top-tiered queue since it is

closer to cover the target OSs. However, if it does not cover 7 → 10
but CFG edge 8→ 9, it is also added into the second-tiered queue as
it executes towards to 7→ 10.

4.5 Power Scheduling

The power scheduling concerns about how many mutation chances
are assigned to the given test case. A test case that has more chances
to cover OSs with mutations should be assigned with more energy.
Existing coverage-based fuzzers (e.g., AFL) usually calculate the
energy for the selected test case as follows [23]:

enerдy(i) = allocate_enerдy(qi )
where i is the seed and qi is the quality of the seed, depending on
the execution time, branch edge coverage, creation time and so on.

UAFL considers the OS edge coverage and updates the existing
power scheduling as follows:

enerдy(i)′ = enerдy(i) ∗ (1 +
#c_OSe
#t_OSe

)

where #t_OSe represents the total number of OS edges, and #c_OSe
denotes the number of OS edges that are covered by seed i . Intu-
itively, the number of covered OS edges implies how close the seeds
are to OSs. Thus, UAFL assigns higher energy to seeds closer to
OSs for them to have more chances to cover more OS edges with
mutations.

5 EVALUATION

We have implemented the static typestate analysis on top of an in-
terprocedural static value-flow analysis tool called SVF [32], which
is able to perform scalable and precise interprocedural dependence
analysis for C and C++ programs. This part takes about 4000 lines of
C/C++ code. In the instrumentation component, we have designed
three bulks of shared memory that tracks the execution information.
The instrumentation consists of about 2000 lines of C/C++ code.
The fuzzing engine is implemented based on the AFL version 2.51b,
where we have implemented the information flow analysis based
mutation. We added about 1000 lines of C/C++ codes into this part.

5.1 Evaluation Setup

In the experiments, we aim to answer the following questions:
RQ1 - What is the effectiveness of the static typestate analysis for
UaF vulnerabilities?
RQ2 - How effective is UAFL in discovering UaF vulnerabilities?
RQ3 - How effective are the two strategies in UAFL, i.e., operation
sequence feedback and information flow based mutation?
RQ4 - How is the code coverage relevant to UaF vulnerabilities?
Following Klees’s suggestions in [18], we conduct a large-scale
experiment and compare UAFL with state-of-the-art fuzzers.

5.1.1 Baseline Fuzzers. To evaluate the effectiveness of UAFL, we
select 6 representative state-of-the-art fuzzers, which incorporate
diverse advanced techniques to improve the effectiveness of fuzzing.
(1) AFL [47] is the most popular baseline fuzzer, which is studied

in most coverage-based fuzzers.
(2) AFLFast [4] is an advanced variant of AFL with a better power

scheduling that was incorporated into the later versions of AFL.
(3) FairFuzz [21] monitors the program executions, and computes

the key patterns inside a seed to reach rare CFG edges.
(4) MOpt [25] adopts a customized Particle Swarm Optimization

(PSO) algorithm to schedule the mutation operations, which
enables more efficient discovery of vulnerabilities.

(5) Angora [9] utilizes taint analysis to track information flow, and
then uses gradient descent to break through the hard branches.

(6) QSYM [46] is an effective symbolic execution assisted fuzzer.

5.1.2 Benchmark Programs. We consider the benchmark programs
with the following factors: frequency of being tested in related
work, popularity of being used by end users, and their functionality
diversities. Finally, we select 14 widely-used programs as our bench-
mark, including the well-known development tools (e.g., readelf 2.28,
readelf 2.31), code processing tools (e.g., mjs, Mini XML, GNU cflow,
nasm), graphics processing libraries (e.g., ImageMagick, jpegoptim),
compression tools (e.g., lrzip and openh264), data processing li-
braries (e.g., libpff and liblouis), an encryption key management
tool (e.g., boringssl) and a Satisfiability Modulo Theories solver (e.g.,
boolector). For each program, we select the version that includes
the UaF vulnerabilities (c.f. Column Version in Table 1).

5.1.3 Configuration Parameters. The effectiveness of fuzzers heav-
ily replies on the randommutations, thus there may be performance
deviation in the evaluation. Following Klees’s suggestions in [18],
we take three actions to mitigate performance deviation. First, we
test each program for a longer time, until the fuzzer reaches a rel-
atively stable state. In the paper, we run each fuzzer for 24 hours.
Second, we perform each experiment for 8 times, and evaluate their
statistical performance. Third, for the initial seeds, if the programs
provide the sample seed inputs, we use them as the initial seeds.
Otherwise, we randomly download some input files from the inter-
net, according to the required input file formats. All the initial seeds
can be found in our website [34]. All our experiments have been
performed on machines with an Intel(R) Xeon(R) CPU E5-1650 v4
(3.60GHz) and 16GB of RAM under 64-bit Ubuntu LTS 18.04.

5.2 Static Typestate Analysis Statistics (RQ1)

In Table 1, we present the static typestate analysis results for bench-
mark programs. The first three columns denote the basic informa-
tion of programs, including program names, their versions, and
lines of code. We can see that the chosen programs have high di-
versities in terms of program size, from 2k to 1,781k lines of code.

Column T_BB lists the number of total basic blocks in the pro-
gram. Column BBUAF presents the number of basic blocks in OSs,
which may violate the UaF typestate property. Specifically, UAFL
instruments 19.2% of the basic blocks on average, to provide op-
eration sequence feedback. Column BBIF denotes the number of
basic blocks in which we perform the information flow instrumen-
tation. To calculate the information flow strength, UAFL performs
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Table 1: Static Typestate Analysis Results

Program Version LoC T_BB BBUAF BBIF BBFree #OS T(s)

readelf 2.28 1,781k 16,967 2,681 (15.8%) 1,103 (6.5%) 91 41,605 262
readelf 2.31 1,758k 19,973 3,647 (18.2%) 1,555 (7.8%) 98 130,102 508
jpegoptim 1.45 2k 634 36 (5.7%) 28 (4.4%) 5 44 1
liblouis 3.2.0 53k 2,957 486 (16.4%) 190 (6.4%) 8 422 18
lrzip 0.631 19k 9,356 1,051 (11.2%) 467 (5.0%) 6 313 150
Mini XML 2.12 15k 4,237 890 (21.0%) 788 (18.6%) 10 486 44
boringssl — 162k 22,547 3,701 (16.4%) 3,265 (14.4%) 32 84,069 2,005
GNU cflow 1.6 50k 5,095 1,402 (27.5%) 751 (14.7%) 33 4330 30
Boolector 3.0.0 141k 26,866 11,511 (42.8%) 9,031 (33.6%) 4 28,586 2,387
openh264 1.8.0 143k 12,735 2,090 (16.4%) 927 (7.3%) 1 1,219 1,127
libpff — 125k 18,569 6,371 (34.3%) 6,041 (32.5%) 60 20,865 122
mjs 1.20.1 40k 4,937 546 (11.0%) 343 (6.9%) 16 1,143 24
ImageMagick 7.0.8 485k 31,190 1,573 (5.0%) 1,336 (4.3%) 3 55,877 2,185
nasm 2.14 101k 13,965 3,812 (27.2%) 3,390 (24.2%) 2 3,357 2,210
Avg. - 348k 13,573 2,842 (19.2%) 2,087 (13.3%) 26 26,601 1,148

Table 2: Time to Expose Uaf Vulnerabilities in 8 State-of-the-Art Fuzzers

Program Vulnerabilities

Time Usage to Expose the Vulnerabilities (hours)

UAFL UAFLNoI F AFL AFLFast FairFuzz MOpt Angora QSYM

readelf-2.28 CVE-2017-6966 0.59 1.32 6.09 1.43 0.68 3.61 T/O 6.20
readelf-2.31 CVE-2018-20623 0.10 0.10 0.10 0.10 T/O 0.10 0.02 0.10
jpegoptim CVE-2018-11416 0.09 0.10 0.59 0.88 1.08 1.49 T/O 1.95
liblouis CVE-2017-13741 1.11 1.81 15.81 T/O 6.96 17.38 T/O 13.42
lrzip CVE-2018-11496 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mini XML CVE-2018-20592 0.38 0.93 1.28 2.59 0.54 16.7 T/O 18.99
boringssl Google Test-suit 0.33 1.06 T/O T/O 4.67 7.62 – T/O
GNU cflow uaf-issue-1 1.80 12.21 23.29 T/O 20.02 T/O T/O T/O
Boolector uaf-issue-2 0.83 0.97 1.09 0.82 0.39 1.66 – 1.16
openh264 uaf-issue-3 8.17 13.00 15.80 11.15 8.17 15.39 T/O 18.45
libpff uaf-issue-4 1.39 1.39 4.21 4.11 3.98 4.35 T/O 4.98
mjs uaf-issue-5 1.21 1.23 3.10 3.02 1.45 4.6 T/O 6.71
ImageMagick uaf-issue-6 6.29 13.92 T/O T/O T/O T/O T/O T/O

nasm CVE-2018-19216 2.59 4.69 8.32 3.45 2.86 11.46 2.75 9.64
CVE-2018-20535 17.03 T/O T/O T/O T/O T/O T/O T/O

Missed Vulnerabilities 0 1 3 5 3 3 10 4
Avg. Time Usage 2.79 + 0.32 5.12 + 0.32 10.11 9.84 8.18 10.42 18.67 11.84
UAFL’s Speedup — 1.75× 3.25× 3.16× 2.63× 3.35× 6.00× 3.80×

UAFLNoI F ’s Speedup — — 1.86× 1.81× 1.50× 1.92× 3.43× 2.18×
* T/O means the fuzzer cannot discover vulnerabilities within 24 hours across 8 runs. When we calculate the average time usage, we replace T/O with 24 hours.
* Angora does not work on the programs boringssl and Boolector, denoted by ‘-’, because it throws the exceptions during the instrumentation.

the instrumentation on an average of 13.3% of basic blocks. The
experiment results show that, with less instrumentation (total 32.5%
in both operation sequence and information flow instrumentation),
UAFL can concentrate more power and energy on the OSs which
may violate the typestate property of UaF.

Column BBFree shows the number of static memory-free instruc-
tions. Column #OS presents the number of operation sequences
identified by static typestate analysis. It reports on average 26, 601
OSs in each program. Since UAFL adopts the path-insensitive reach-
ability analysis, it produces too many false positives. Thus, we
employ the fuzzing to confirm whether these OSs really trigger UaF
vulnerabilities. In the last columnT (s), we list the time overhead for
static typestate analysis. In all programs, UAFL requires less than
one hour, i.e., avg. 1, 148s (0.32 hour), to conduct the static typestate

analysis. Compared to the long time fuzzing process (e.g., 24 hours),
the time overhead for static typestate analysis is acceptable.

RQ1: The results show that the time overhead incurred in
the static typestate analysis of UAFL is acceptable, with an
average of 1,148s (0.32 hour). On average, 19.2% and 13.3%
of basic blocks are instrumented, respectively, for operation
sequence feedback and information flow analysis.

5.3 Vulnerability Detection Results (RQ2)

As suggested by Klees [18], the vulnerabilities found are ideal to
measure the effectiveness of fuzzers. We evaluate the fuzzers with
the time used for discovering UaF vulnerabilities.
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Table 2 shows the time usage to discover the unique UaF vul-
nerability. The first two columns list the program names, and the
vulnerability ID. The following columns presents the results for each
fuzzer. Compared to state-of-the-arts fuzzers (e.g., AFL, AFLFast,
FairFuzz, MOpt, Angora, and QSYM), UAFL takes much less time
(i.e., avg. 2.79 hours) while others need about 10 hours. Even if the
time overhead (i.e., avg. 0.32 hours) in static typestate analysis is
added, UAFL is still more effective than others. Row UAFL’s Speedup

shows the average speedup achieved by UAFL: a speedup of 3.25×,
3.16×, 2.63×, 3.35×, 6.00×, and 3.80× respectively, compared with
the other fuzzers.

For shallow vulnerabilities (e.g., readelf-2.31, lrzip), all fuzzers
work well; but for deep/hard vulnerabilities, e.g., liblouis,GNU cflow,
and ImageMagick, UAFL performs much better than the others. For
example, UAFL takes about 1.80 hours to discover UaF in GNU

cflow, while other fuzzers almost spend about 20 hours.
In addition, of the 15 vulnerabilities, UAFL performs the best

in 13 (86.7%) vulnerabilities. In the program readelf-2.31, Angora
performs the best, and FairFuzz achieves the best performance
in Boolector. A close investigation reveals the reason behind is
that these fuzzers’ objectives coincidentally fit with the UaF. For
example, FairFuzz aims to cover rare CFG edges and the memory-
free statement in Boolector is under such rare CFG edges. Thus,
FairFuzz has high chance to detect the UaF after covering the free
statement. Different with other tools, UAFL is designed based on
the typestate properties. Hence, UAFL performs more stably, and
achieves better performance for most programs.

Row Missed Vulnerabilities shows the number of UaF vulnera-
bilities which cannot be discovered by each fuzzer. AFL, AFLFast,
FairFuzz, MOpt, Angora and QSYM missed 3, 5, 3, 3, 10, and 4
vulnerabilities within 24 hours, respectively.
Statistical Test. Tomitigate the randomness, we conducted the sta-
tistical test for the experiment results. The Vargha-Delaney statistic
(Â12) is a non-parametric measure of effect size, and usually used
to measure the randomized algorithms [3]. Given the time usage
in UAFL and other fuzzers, the Â12 statistic measures the proba-
bility that UAFL performs better than others. Moreover, we also
use Mann-Whitney U to measure the statistical significance of per-
formance gain. When it is significant, we mark the Â12 values in
bold. In the column Â12(UAFL) of Table 3, we can see that UAFL
significantly performs better than other fuzzers in most cases.

RQ2: From Tables 2 and 3, UAFL performs significantly better
than other fuzzers in most cases. UAFL achieves a speedup of
3.25×, 3.16×, 2.63×, 3.35×, 6.00×, and 3.80×, compared to AFL,
AFLFast, FairFuzz, MOpt, Angora, and QSYM, respectively.

5.4 Evaluation of the Strategies (RQ3)

UAFL mainly adopts the operation sequence feedback and infor-
mation flow analysis based mutation strategies to enhance the
capability of UaF detection. To evaluate the effectiveness of each
strategy, we configure a new fuzzerUAFLNoI F , which only incorpo-
rates operation sequence feedback strategy but not the information
flow analysis. The experiment results of UAFLNoI F is shown under
the column UAFLNoI F in Table 2 and Â12(UAFLNoI F ) in Table 3.
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Figure 5: Code coverage relevant to operation sequences.

By comparing the results, it shows that UAFLNoI F is still better
than other fuzzers in most cases. For example, UAFLNoI F aver-
agely takes 5.12 hours to discover each vulnerability, achieving the
speedups of 1.86×, 1.81×, 1.50×, 1.91×, 3.43×, and 2.18× over other
fuzzers, respectively. Similarly, the statistical test also shows that
UAFLNoI F is more effective in most cases. The results demonstrate
the effectiveness of the operation sequence feedback.

By comparing the results of UAFL and UAFLNoI F , we find that
UAFL performs better thanUAFLNoI F in each program. Specifically,
UAFL achieves 1.75× improvement over UAFLNoI F . It is worth
noting, UAFLNoI F cannot find the UaF (i.e., CVE-2018-20535) in the
program nasm within 24 hours. However, with the information flow
based mutation incorporated, UAFL can discover the vulnerability
with 17.03 hours. The results demonstrate the effectiveness of the
information flow based mutation.

RQ3: The two strategies used in UAFL are both effective. The
comparative results between UAFLNoI F and other tools show
the effectiveness of operation sequence feedback. The com-
parative results between UAFL and UAFLNoI F show the con-
tribution of the information flow analysis based mutation.

5.5 Code Coverage (RQ4)

Although there is no fundamental connection between maximizing
code coverage and finding more vulnerabilities [18], the general
efficacy of grey-box fuzzers over black-box ones means the certain
correlation. It is believed that the code coverage makes sense as a
secondary measure for the effectiveness of fuzzers. In this section,
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Table 3: Statistical Test for Time-to-Exposure UaF Vulnerabilities

Program Vulnerability
Â12 (UAFL) Â12 (UAFLNoI F )

AFL AFLFast FairFuzz MOpt Angora QSYM AFL AFLFast FairFuzz MOpt Angora QSYM

readelf CVE-2017-6966 0.906 0.898 1.000 0.609 1.000 0.968 0.796 0.546 1.000 0.453 1.000 0.828

readelf CVE-2018-20623 0.500 0.500 0.500 0.500 0.000 0.500 0.500 0.500 0.500 0.500 0.000 0.500
jpegoptim CVE-2018-11416 0.995 1.000 1.000 1.000 1.000 1.000 0.995 1.0 1.000 1.000 1.000 1.000

liblouis CVE-2017-13741 0.828 0.937 0.851 1.000 1.000 0.984 0.875 0.937 0.867 1.000 1.000 0.968

lrzip CVE-2018-11496 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Mini XML CVE-2018-20592 0.968 1.000 0.812 1.000 1.000 1.000 0.617 0.929 0.750 0.781 1.000 0.781

boringssl Google Test-suit 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.828 1.000 1.000 1.000

GNU cflow uaf-issue-1 1.000 1.000 1.000 1.000 1.000 1.000 0.937 0.968 0.609 0.968 1.000 1.000

Boolector uaf-issue-2 0.720 1.000 0.030 0.880 1.000 0.780 0.620 1.000 0.020 0.820 1.000 0.720
openh264 uaf-issue-3 0.937 0.781 0.150 1.000 1.000 1.000 0.687 0.359 0.031 0.640 1.000 0.875

libpff uaf-issue-4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mjs uaf-issue-5 0.980 0.980 0.590 1.000 1.000 1.000 0.880 0.890 0.604 0.987 1.000 0.987

ImageMagick uaf-issue-6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

nasm CVE-2018-19216 0.960 0.600 0.560 0.920 0.600 0.800 0.800 0.319 0.280 0.840 0.280 0.800
CVE-2018-20535 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.500 0.500 0.500 0.500 0.500

Significant better (A12 > 0.71, bold) 11/15 12/15 9/15 12/15 12/15 12/15 9/15 9/15 7/15 9/15 11/15 10/15
* We highlight the Â12 in the bold if its corresponding Mann-Whitney U test is significant.

we only calculate the code coverage identified by the typestate
analysis because 1) only they can help find the UaF vulnerabilities;
and 2) the coverage can measure how close the generated test cases
are to UaF vulnerabilities, thus can signify the quality of generated
test cases. We evaluate the code coverage in UAFL, UAFLNoI F , AFL,
AFLFast, FairFuzz, MOpt, Angora, and QSYM. We only show here
the results for 6 programs in which the UaF vulnerabilities are hard
to detect, the rest can be found from our website [34].

Fig. 5 presents the code coverage achieved by 8 state-of-the-art
fuzzers. In the early stage, all 8 fuzzers show the similar code cov-
erage growth. As the time goes on, the code coverage in UAFL and
UAFLNoI F grows faster than the other 6 fuzzers. At the end of 24
hours, UAFL and UAFLNoI F almost achieve the best code coverage
among all eight fuzzers. The code coverage also reflects why UAFL
and UAFLNoI F perform better in discovering vulnerabilities than
others, as shown in Table 2. For other fuzzers, the results in AFL,
AFLFast, MOpt, Angora, and QSYM are close to each other. FairFuzz
averagely performs better than the other 5 fuzzers. After investi-
gating the fuzzing process in FairFuzz, we find that some edges
in OSs of UaF are rarely covered, which is in accordance with the
target of FairFuzz. Although FairFuzz can cover some rare edges
individually, it is still challenging to cover the whole operation
sequences. Hence, it is less effective to discover UaF than UAFL.
Another example is program readelf-2.28, where Angora achieves
the best code coverage. However, Angora does not discover the UaF
vulnerability as shown in Table 2. This is because Angora covers
only individual edges but not the sequences.

RQ4: Compared to other fuzzers, UAFL and UAFLNoI F
achieve better code coverage relevant to UaF vulnerability,
which also explains why UAFL and UAFLNoI F are more ef-
fective in discovering UaF vulnerabilities.

5.6 Discussion and Threat to Validity

This paper evaluates our proposed typestate-guided fuzzer for de-
tecting UaF vulnerabilities. Due to the high expressiveness of type-
state property, our approach can be extended to detect other types
of vulnerabilities. For example, we can extend UAFL to detect API-
misuse [2], e.g., file read/write operations by customizing the types-
tate property. On the other hand,UAFL adopts the typestate analysis

to identify operation sequences violating the typestate property,
and then focuses its resource on these sequences, imposing less
power for exercising other parts of the program. Thus, UAFL is
complementary to existing coverage-based fuzzers to find the vul-
nerabilities that violate the typestate property.

One threat to validity is that, it may cause a certain sample bias
when selecting programs to evaluate the capabilities of UAFL in
discovering UaFs. To address this issue, we have selected a wide
range of real-world programs, which have different functionalities
and are frequently used in others’ work. In addition, each experi-
ment is conducted 8 times to mitigate the randomness factor. Due
to the unique characteristics of UaF (i.e., malloc→ free→ use), we
believe that the real-world UaF vulnerabilities found by UAFL are
representative.

6 RELATEDWORK

We discuss some closely related work in the following topic areas.
Typestate Analysis. Typestate analysis is a widely used technique
in formal verification [13–15]. However, as proved by Field et al., the
typestate verification problem becomes NP-hard for programs with
maximum aliasing width of three and aliasing depth of two [14].
This limits the practical usefulness of typestate verification on large
programs. To tackle this problem, Hua et al. introduced machine-

learning-guided typestate analysis for static UaF detection [41]. They
leverage machine learning techniques to reduce the overhead of
typestate analysis, making it scalable to large-size programs. Chen
et al. [45, 48] proposed a regular property guided symbolic execu-
tion to verify whether there is a path in the program satisfying
the given property. These techniques are different from UAFL in
two ways: (1) they employ symbolic execution while we enhance
the fuzzing technique; and (2) they identify only a program path
satisfying the property while we find all possible program paths
violating the property. These works bring insights for UAFL, and
we provide another approach to applying typestate analysis by
incorporating it into fuzzing.
Use-After-Free Run-time Protection. Since UaF vulnerabilities
are highly exploitable [40], many works are proposed to protect
the program via early detection of UaF [5, 19, 35, 44]. Most of these
works eliminate UaF vulnerabilities by capturing the existence of
dangling pointers and disposing. This is because dangling pointers
are the hotbed for UaF vulnerabilities. For example, in [19], a pointer
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is nullified once the corresponding memory is freed. This effectively
turns the UaF bug into a null-pointer dereference, which is much
less harmful. These works are orthogonal to UAFL as they focus on
capturing and monitoring the UaF behaviors while UAFL focuses
on discovering and triggering UaF vulnerabilities.
Use-After-Free Static Detection. Besides the dynamic approach
proposed in this paper, researchers also proposed several static
approaches for UaF discovery [30, 41, 42]. These approaches rely
heavily on pointer analysis, which bears a dilemma in nature. The
dilemma is that we need to sacrifice a lot of scalability in exchange
of a small amount of increment in precision and the result can
still suffer from high false positives. Comparing with these static
approaches, UAFL strikes a balance by having no false positive
(every UaF found is associated with a proof-of-crash input) as well
as good scalability (only light-weight static analysis is needed and
the rest is handled by the dynamic part).
Greybox Fuzzing. Recently, lots of greybox fuzzing techniques
have been proposed to detect various types of bugs [1, 4, 6, 9, 16, 21–
23, 25, 28, 29, 31, 46]. These techniques either enhance the different
components of the greybox fuzzer [4, 16, 21–23, 25] or combine grey-
box fuzzing with other techniques such as static analysis [23, 29],
symbolic execution [31, 46], or taint analysis [9, 28]. These tech-
niques are general purpose techniques which are not designed to
detect a specific type of bugs with more effectiveness. With the
experiments in Section 5, it is demonstrated that UAFL can substan-
tially outperform these general purpose fuzzers in UaF detection.
Besides the general purpose greybox fuzzers, there are also directed
greybox fuzzers to quickly reach target locations [3, 8]. Comparing
with the directed fuzzers, UAFL does not require prior knowledge
about the locations of UaF bugs for reaching and detection. Other
than the general purpose and directed greybox fuzzers, researchers
also proposed fuzzing techniques for finding specific types of bugs,
such as slowfuzz [27], perffuzz [20], MemLock [39]. However, none
of them is designed for UaF bugs and to the best of our knowl-
edge, UAFL is the first greybox fuzzer specialized in detecting UaF
vulnerabilities.

7 CONCLUSION

In this paper, we propose a typestate-guided fuzzer UAFL for discov-
ering vulnerabilities violating typestate properties, e.g. UaF vulner-
abilities. We first employ a typestate analysis to extract operation
sequences violating a given typestate property, which are then used
to guide the fuzzing process to generate test cases progressively
towards these operation sequences. We also adopt information
flow analysis to guide the mutation process to improve the effi-
ciency of the fuzzing process. Our experimental results have shown
that UAFL substantially outperforms the state-of-the-art fuzzers,
including AFL, AFLFast, FairFuzz, MOpt, Angora and QSYM, in
discovering UaF vulnerabilities.
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